Third order homogeneous weakly hyperbolic equations with nonanalytic coefficients

被引:2
作者
Jannelli, E. [1 ]
Taglialatela, G. [2 ]
机构
[1] Univ Bari, Dept Math, I-70125 Bari, Italy
[2] Univ Bari, Dept Econ & Math Methods, I-70124 Bari, Italy
关键词
Cauchy problem; Homogeneous hyperbolic equations; Symmetrizer; SYSTEMS; TIME; SYMMETRIZATION;
D O I
10.1016/j.jmaa.2014.04.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for homogeneous linear third order weakly hyperbolic equations with time depending coefficients. We study the relation between the regularity of the coefficients and the Gevrey class in which the Cauchy problem is well-posed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1006 / 1029
页数:24
相关论文
共 17 条
[1]   Well-posedness in C∞ for some weakly hyperbolic equations [J].
Colombini, F ;
Orrú, N .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (03) :399-420
[2]  
Colombini F., 1979, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V6, P511
[3]  
Columbini F., 1983, ANN SCUOLA NORM SUP, V10, P291
[4]  
D'Ancona P, 1998, B UNIONE MAT ITAL, V1B, P169
[5]  
D'Ancona P, 2008, OSAKA J MATH, V45, P921
[6]  
DAbbicco M., 2009, ANN FAC SCI TOULOUSE, V18, P247
[7]   DERIVATIVE OF A DETERMINANT [J].
GOLBERG, MA .
AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (10) :1124-1126
[9]   LINEAR KOVALEVSKIAN SYSTEMS WITH TIME-DEPENDENT COEFFICIENTS [J].
JANNELLI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (14) :1373-1406
[10]  
JANNELLI E, 1985, ANN MAT PUR APPL, V140, P133