Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations

被引:86
作者
Buffa, A. [1 ]
Sangalli, G. [1 ,2 ]
Vazquez, R. [1 ]
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
基金
欧洲研究理事会;
关键词
Maxwell equations; De Rham diagram; Exact sequences; Isogeometric methods; Splines; T-splines; ELEMENT EXTERIOR CALCULUS; FINITE-ELEMENTS; LINEAR INDEPENDENCE; LOCAL REFINEMENT; EDGE ELEMENTS; APPROXIMATION; PERFORMANCE; CONTINUITY; FORMS; COST;
D O I
10.1016/j.jcp.2013.08.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we introduce methods for electromagnetic wave propagation, based on splines and on T-splines. We define spline spaces which form a De Rham complex and following the isogeometric paradigm, we map them on domains which are (piecewise) spline or NURBS geometries. We analyze their geometric and topological structure, as related to the connectivity of the underlying mesh, and we present degrees of freedom together with their physical interpretation. The theory is then extended to the case of meshes with T-junctions, leveraging on the recent theory of T-splines. The use of T-splines enhance our spline methods with local refinement capability and numerical tests show the efficiency and the accuracy of the techniques we propose. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1291 / 1320
页数:30
相关论文
共 50 条
  • [41] An efficient data structure for calculation of unstructured T-spline surfaces
    Wang, Wei
    Zhang, Yang
    Du, Xiaoxiao
    Zhao, Gang
    VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2019, 2 (01)
  • [42] Multilevel T-spline Approximation for Scattered Observations with Application to Land Remote Sensing
    Kermarrec, Gael
    Morgenstern, Philipp
    COMPUTER-AIDED DESIGN, 2022, 146
  • [43] T-spline finite element method for the analysis of shell structures
    Uhm, Tae-Kyoung
    Youn, Sung-Kie
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (04) : 507 - 536
  • [44] Reconsideration of T-spline data models and their exchanges using STEP
    Xiao, Wenlei
    Liu, Yazui
    Li, Rui
    Wang, Wei
    Zheng, Jianmin
    Zhao, Gang
    COMPUTER-AIDED DESIGN, 2016, 79 : 36 - 47
  • [45] Handling Extraordinary Nodes with Weighted T-spline Basis Functions
    Liu, Lei
    Zhang, Yongjie Jessica
    Wei, Xiaodong
    24TH INTERNATIONAL MESHING ROUNDTABLE, 2015, 124 : 161 - 173
  • [46] Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline
    Wenyan Wang
    Yongjie Zhang
    Guoliang Xu
    Thomas J. R. Hughes
    Computational Mechanics, 2012, 50 : 65 - 84
  • [47] Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis
    Wei, Xiaodong
    Zhang, Yongjie Jessica
    Toshniwal, Deepesh
    Speleers, Hendrik
    Li, Xin
    Manni, Carla
    Evans, John A.
    Hughes, Thomas J. R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 609 - 639
  • [48] Adaptive isogeometric gear contact analysis: Geometry generation, truncated hierarchical B-Spline refinement and validation
    Karampatzakis, Christos
    Mantzaflaris, Angelos
    Provatidis, Christopher
    Mihailidis, Athanassios
    COMPUTERS & STRUCTURES, 2024, 305
  • [49] Cubic B-Spline Functions and Their Usage in Interpolation
    Munguia, Maria
    Bhatta, Dambaru
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (08): : 1 - 19
  • [50] Uniform B-spline approximation in Sobolev spaces
    Reif, U
    NUMERICAL ALGORITHMS, 1997, 15 (01) : 1 - 14