Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations

被引:86
作者
Buffa, A. [1 ]
Sangalli, G. [1 ,2 ]
Vazquez, R. [1 ]
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
基金
欧洲研究理事会;
关键词
Maxwell equations; De Rham diagram; Exact sequences; Isogeometric methods; Splines; T-splines; ELEMENT EXTERIOR CALCULUS; FINITE-ELEMENTS; LINEAR INDEPENDENCE; LOCAL REFINEMENT; EDGE ELEMENTS; APPROXIMATION; PERFORMANCE; CONTINUITY; FORMS; COST;
D O I
10.1016/j.jcp.2013.08.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we introduce methods for electromagnetic wave propagation, based on splines and on T-splines. We define spline spaces which form a De Rham complex and following the isogeometric paradigm, we map them on domains which are (piecewise) spline or NURBS geometries. We analyze their geometric and topological structure, as related to the connectivity of the underlying mesh, and we present degrees of freedom together with their physical interpretation. The theory is then extended to the case of meshes with T-junctions, leveraging on the recent theory of T-splines. The use of T-splines enhance our spline methods with local refinement capability and numerical tests show the efficiency and the accuracy of the techniques we propose. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1291 / 1320
页数:30
相关论文
共 50 条
  • [31] Dynamic Ball B-Spline Curves
    Zhou, Ciyang
    Zhang, Yu
    Wang, Xingce
    Wu, Zhongke
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT IV, 2024, 14498 : 15 - 27
  • [32] B-spline estimation for spatial data
    Tang Qingguo
    Cheng Longsheng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (02) : 197 - 217
  • [33] B-spline techniques for volatility modeling
    Corlay, Sylvain
    JOURNAL OF COMPUTATIONAL FINANCE, 2015, 19 (03) : 97 - 135
  • [34] Hierarchical B-spline complexes of discrete differential forms
    Evans, John A.
    Scott, Michael A.
    Shepherd, Kendrick M.
    Thomas, Derek C.
    Hernandez, Rafael Vazquez
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 422 - 473
  • [35] Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline
    Wang, Wenyan
    Zhang, Yongjie
    Xu, Guoliang
    Hughes, Thomas J. R.
    COMPUTATIONAL MECHANICS, 2012, 50 (01) : 65 - 84
  • [36] T-spline based XIGA for fracture analysis of orthotropic media
    Ghorashi, S. Sh.
    Valizadeh, N.
    Mohammadi, S.
    Rabczuk, T.
    COMPUTERS & STRUCTURES, 2015, 147 : 138 - 146
  • [37] Curvature-guided adaptive T-spline surface fitting
    Wang, Yimin
    Zheng, Jianmin
    COMPUTER-AIDED DESIGN, 2013, 45 (8-9) : 1095 - 1107
  • [38] An efficient data structure for calculation of unstructured T-spline surfaces
    Wei Wang
    Yang Zhang
    Xiaoxiao Du
    Gang Zhao
    Visual Computing for Industry, Biomedicine, and Art, 2
  • [39] Adaptive Reconstruction of T-Spline Surfaces of Arbitrary Topological Type
    Peng, Xiaoxin
    Tang, Yuehong
    9TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, VOLS 1 AND 2: MULTICULTURAL CREATION AND DESIGN - CAID& CD 2008, 2008, : 599 - 603
  • [40] Outlier-free spline spaces for isogeometric discretizations of biharmonic and polyharmonic eigenvalue problems
    Manni, Carla
    Sande, Espen
    Speleers, Hendrik
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417