Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations

被引:86
|
作者
Buffa, A. [1 ]
Sangalli, G. [1 ,2 ]
Vazquez, R. [1 ]
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
基金
欧洲研究理事会;
关键词
Maxwell equations; De Rham diagram; Exact sequences; Isogeometric methods; Splines; T-splines; ELEMENT EXTERIOR CALCULUS; FINITE-ELEMENTS; LINEAR INDEPENDENCE; LOCAL REFINEMENT; EDGE ELEMENTS; APPROXIMATION; PERFORMANCE; CONTINUITY; FORMS; COST;
D O I
10.1016/j.jcp.2013.08.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we introduce methods for electromagnetic wave propagation, based on splines and on T-splines. We define spline spaces which form a De Rham complex and following the isogeometric paradigm, we map them on domains which are (piecewise) spline or NURBS geometries. We analyze their geometric and topological structure, as related to the connectivity of the underlying mesh, and we present degrees of freedom together with their physical interpretation. The theory is then extended to the case of meshes with T-junctions, leveraging on the recent theory of T-splines. The use of T-splines enhance our spline methods with local refinement capability and numerical tests show the efficiency and the accuracy of the techniques we propose. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1291 / 1320
页数:30
相关论文
共 50 条
  • [1] B-spline techniques for electromagnetics
    Apaydin, G.
    Ari, N.
    MMET 2006: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, CONFERENCE PROCEEDINGS, 2006, : 338 - +
  • [2] An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations
    Simpson, R. N.
    Liu, Z.
    Vazquez, R.
    Evans, J. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 362 : 264 - 289
  • [3] Isogeometric analysis for compound B-spline surfaces
    Wang, Yan-Wei
    Huang, Zheng-Dong
    Zheng, Ying
    Zhang, Sheng-Gang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 261 : 1 - 15
  • [4] Object oriented implementation of the T-spline based isogeometric analysis
    Rypl, Daniel
    Patzak, Borek
    ADVANCES IN ENGINEERING SOFTWARE, 2012, 50 : 137 - 149
  • [5] A posteriori error estimators for hierarchical B-spline discretizations
    Buffa, Annalisa
    Garau, Eduardo M.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (08): : 1453 - 1480
  • [6] ON T-SPLINE CLASSIFICATION
    Li, Xin
    Hong, Liangwei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (03): : 474 - 485
  • [7] Manifold T-spline
    He, Ying
    Wang, Kexiang
    Wang, Hongyu
    Gu, Xianfeng
    Qin, Hong
    GEOMETRIC MODELING AND PROCESSING - GMP 2006, PROCEEDINGS, 2006, 4077 : 409 - 422
  • [8] Extending Ball B-spline by B-spline
    Liu, Xinyue
    Wang, Xingce
    Wu, Zhongke
    Zhang, Dan
    Liu, Xiangyuan
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 82
  • [9] Conformal solid T-spline construction from boundary T-spline representations
    Yongjie Zhang
    Wenyan Wang
    Thomas J. R. Hughes
    Computational Mechanics, 2013, 51 : 1051 - 1059
  • [10] Isogeometric cable elements based on B-spline curves
    Son Thai
    Kim, Nam-Il
    Lee, Jaehong
    MECCANICA, 2017, 52 (4-5) : 1219 - 1237