On the Harary index of graph operations

被引:26
作者
Das, Kinkar C. [1 ]
Xu, Kexiang [2 ]
Cangul, Ismail Naci [3 ]
Cevik, Ahmet Sinan [4 ]
Graovac, Ante [5 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing, Jiangsu, Peoples R China
[3] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey
[4] Selcuk Univ, Dept Math, Fac Sci, TR-42075 Campus, Konya, Turkey
[5] Univ Split, Fac Sci, HR-21000 Split, Croatia
基金
中国博士后科学基金; 新加坡国家研究基金会;
关键词
graph; Harary index; graph operations; WIENER INDEX; TOPOLOGICAL INDEXES; HYPER-WIENER; TREES;
D O I
10.1186/1029-242X-2013-339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. In this paper, expressions for the Harary indices of the join, corona product, Cartesian product, composition and disjunction of graphs are derived and the indices for some well-known graphs are evaluated. In derivations some terms appear which are similar to the Harary index and we name them the second and third Harary index.
引用
收藏
页数:16
相关论文
共 28 条
[1]   EIGENVALUES AND EXPANDERS [J].
ALON, N .
COMBINATORICA, 1986, 6 (02) :83-96
[2]  
Biggs N. L., 1993, ALGEBRAIC GRAPH THEO, P68
[3]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[4]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[5]  
Das KC, 2013, MATCH-COMMUN MATH CO, V70, P301
[6]  
Das KC, 2010, MATCH-COMMUN MATH CO, V64, P647
[7]   Bounds on Harary index [J].
Das, Kinkar Ch. ;
Zhou, Bo ;
Trinajstic, N. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (04) :1377-1393
[8]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[9]  
Gutman I., 1986, Mathematical concepts in organic chemistry, DOI 10.1515/9783112570180
[10]  
Harary F., 1994, Graph Theory, P22