Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy

被引:70
|
作者
Bag, Nirmalya [2 ,3 ]
Yap, Darilyn Hui Xin [2 ,3 ]
Wohland, Thorsten [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Dept Biol Sci, Singapore 117557, Singapore
[2] Natl Univ Singapore, Dept Chem, Singapore 117548, Singapore
[3] Natl Univ Singapore, Ctr Bioimaging Sci, Singapore 117548, Singapore
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2014年 / 1838卷 / 03期
关键词
Membrane organization; Lipid phase; Activation energy; Camera-based FCS; FCS diffusion law; LIPID RAFTS; LATERAL DIFFUSION; PHASE-SEPARATION; PLASMA-MEMBRANE; TRANSLATIONAL DIFFUSION; RANDOM-WALK; FREE-VOLUME; T-CELLS; CHOLESTEROL; MICROSCOPY;
D O I
10.1016/j.bbamem.2013.10.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The organization of the plasma membrane is regulated by the dynamic equilibrium between the liquid ordered (L-o) and liquid disordered (L-d) phases. The abundance of the L-o phase is assumed to be a consequence of the interaction between cholesterol and the other lipids, which are otherwise in either the L-d or gel (S-o) phase. The characteristic lipid packing in these phases results in significant differences in their respective lateral dynamics. In this study, imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is applied to monitor the diffusion within supported lipid bilayers (SLBs) as functions of temperature and composition. We show that the temperature dependence of membrane lateral diffusion, which is parameterized by the Arrhenius activation energy (E-Arr), can resolve the sub-resolution phase behavior of lipid mixtures. The FCS diffusion law, a novel membrane heterogeneity ruler implemented in ITIR-FCS, is applied to show that the domains in the S-o-L-d phase are static and large while they are small and dynamic in the L-o-L-d phase. Diffusion measurements and the subsequent FCS diffusion law analyses at different temperatures show that the modulation in membrane dynamics at high temperature (313 K) is a cumulative effect of domain melting and rigidity relaxation. Finally, we extend these studies to the plasma membranes of commonly used neuroblastoma, HeLa and fibroblast cells. The temperature dependence of membrane dynamics for neuroblastoma cells is significantly different from that of HeLa or fibroblast cells as the different cell types exhibit a high level of compositional heterogeneity. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:802 / 813
页数:12
相关论文
共 50 条
  • [41] Spot Variation Fluorescence Correlation Spectroscopy Allows for Superresolution Chronoscopy of Confinement Times in Membranes
    Ruprecht, Verena
    Wieser, Stefan
    Marguet, Didier
    Schuetz, Gerhard J.
    BIOPHYSICAL JOURNAL, 2011, 100 (11) : 2839 - 2845
  • [42] High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events
    Grant, D. M.
    McGinty, J.
    McGhee, E. J.
    Bunney, T. D.
    Owen, D. M.
    Talbot, C. B.
    Zhang, W.
    Kumar, S.
    Munro, I.
    Lanigan, P. M. P.
    Kennedy, G. T.
    Dunsby, C.
    Magee, A. I.
    Courtney, P.
    Katan, M.
    Neil, M. A. A.
    French, P. M. W.
    OPTICS EXPRESS, 2007, 15 (24): : 15656 - 15673
  • [43] Following the messenger: Recent innovations in live cell single molecule fluorescence imaging
    Schmidt, Andreas
    Gao, Guoming
    Little, Affron R.
    Jalihall, Ameya P.
    Walter, Nils G.
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2020, 11 (04)
  • [44] Customizable live-cell imaging chambers for multimodal and multiplex fluorescence microscopy
    Tepperman, Adam
    Zheng, David Jiao
    Abou Taka, Maria
    Vrieze, Angela
    Le Lam, Austin
    Heit, Bryan
    BIOCHEMISTRY AND CELL BIOLOGY, 2020, 98 (05) : 612 - 623
  • [45] Live-cell fluorescence imaging with extreme background suppression by plasmonic nanocoatings
    Schreiber, Benjamin
    Heil, Hannah S.
    Kamp, Martin
    Heinze, Katrin G.
    OPTICS EXPRESS, 2018, 26 (16): : 21301 - 21313
  • [46] Combined Scattering, Interferometric, and Fluorescence Oblique Illumination for Live Cell Nanoscale Imaging
    Zheng, Yujie
    Lim, Yean Jin
    Lin, Hanqi
    Xu, Tienan
    Longbottom, Carmen
    Delghingaro-Augusto, Viviane
    Thong, Yee Lin
    Parish, Christopher R.
    Gardiner, Elizabeth E.
    Lee, Woei Ming
    ACS PHOTONICS, 2022, 9 (12) : 3876 - 3887
  • [47] Defining the Diffusion in Model Membranes Using Line Fluorescence Recovery after Photobleaching
    Kure, Jakob L.
    Andersen, Camilla B.
    Rasmussen, Thomas E.
    Lagerholm, B. Christoffer
    Arnspang, Eva C.
    MEMBRANES, 2020, 10 (12) : 1 - 7
  • [48] Multiple Diffusion Pathways in Pluronic F127 Mesophases Revealed by Single Molecule Tracking and Fluorescence Correlation Spectroscopy
    Kirkeminde, Alec W.
    Torres, Travis
    Ito, Takashi
    Higgins, Daniel A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (44) : 12736 - 12743
  • [49] Fluorescence Correlation Spectroscopy Measurements of the Membrane Protein TetA in Escherichia coli Suggest Rapid Diffusion at Short Length Scales
    Chow, David
    Guo, Lin
    Gai, Feng
    Goulian, Mark
    PLOS ONE, 2012, 7 (10):
  • [50] Total internal reflection with fluorescence correlation spectroscopy: Applications to substrate-supported planar membranes
    Thompson, Nancy L.
    Wang, Xiang
    Navaratnarajah, Punya
    JOURNAL OF STRUCTURAL BIOLOGY, 2009, 168 (01) : 95 - 106