Synchronization-based Estimation of the Maximal Lyapunov Exponent of Nonsmooth Systems

被引:8
作者
Baumann, Michael [1 ]
Leine, Remco I. [2 ]
机构
[1] ETH, Inst Mech Syst, CH-8092 Zurich, Switzerland
[2] Univ Stuttgart, Inst Nonlinear Mech, D-70569 Stuttgart, Germany
来源
24TH INTERNATIONAL CONGRESS OF THEORETICAL AND APPLIED MECHANICS - FOUNDATION OF MULTIDISCIPLINARY RESEARCH | 2017年 / 20卷
基金
瑞士国家科学基金会;
关键词
Nonsmooth System; Measure Differential Inclusion; Lyapunov Exponent; Synchronization; TIME-SERIES; DEPENDENCE;
D O I
10.1016/j.piutam.2017.03.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The maximal Lyapunov exponent of a nonsmooth system is the lower bound for the proportional feedback gain necessary to achieve full state synchronization. In this paper, we prove this statement for the general class of nonsmooth systems in the framework of measure differential inclusions. The results are used to estimate the maximal Lyapunov exponent using chaos synchronization, which is illustrated on an impact oscillator. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 30 条
[1]  
Aizerman M.A., 1958, PMM-J APPL MATH MEC, V1, P1065
[2]  
[Anonymous], 1976, PRINCIPLES MATH ANAL
[3]  
[Anonymous], 2001, LECT NOTES APPL MECH
[4]  
[Anonymous], 1994, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, DOI 9780738204536
[5]  
[Anonymous], 2004, DYNAMICS BIFURCATION
[6]  
Benettin G., 1980, Meccanica, V15, P9, DOI [DOI 10.1007/BF02128236, 10.1007/BF02128236]
[7]  
Benettin G., 1980, Meccanica, V15, P21, DOI 10.1007/BF02128237
[8]  
Bockman S. F., 1991, Proceedings of the 1991 American Control Conference (IEEE Cat. No. 91CH2939-7), P1673
[9]  
Bogachev VI., 2007, MEASURE THEORY, DOI [10.1007/978-3-540-34514-5, DOI 10.1007/978-3-540-34514-5]
[10]   LIAPUNOV EXPONENTS FROM TIME-SERIES [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D ;
CILIBERTO, S .
PHYSICAL REVIEW A, 1986, 34 (06) :4971-4979