Schrodinger-Maxwell systems on compact Riemannian manifolds

被引:2
|
作者
Farkas, Csaba [1 ,2 ]
机构
[1] Sapientia Univ, Dept Math & Comp Sci, Targu Mures, Romania
[2] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
关键词
Schrodinger-Maxwell systems; critical points; compact Riemannian manifolds; KLEIN-GORDON-MAXWELL; LOW-ENERGY SOLUTIONS; CRITICAL-POINTS; SOLITARY WAVES; EQUATION; MULTIPLICITY; EXISTENCE; THEOREM;
D O I
10.14232/ejqtde.2018.1.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are focusing to the following Schrodinger-Maxwell system: {-Delta(g)u + beta(x)u + eu phi = Psi(lambda,x)f(u) in M, (SM Psi(lambda,.)e) -Delta(g)phi + phi = qu(2) in M, where (M, g) is a 3-dimensional compact Riemannian manifold without boundary, e, q > 0 are positive numbers, f : R -> R is a continuous function, beta is an element of C-infinity(M) and Psi is an element of C-infinity(R+ x M) are positive functions. By various variational approaches, existence of multiple solutions of the problem (SM Psi(lambda,.)e) is established.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [41] Compact Minimal Submanifolds in a Large Class of Riemannian Manifolds
    Herrera, J.
    Rubio, R. M.
    Salamanca, J. J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [42] Hardy-Sobolev equations on compact Riemannian manifolds
    Jaber, Hassan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 103 : 39 - 54
  • [43] Existence of Solutions to Elliptic Equations on Compact Riemannian Manifolds
    Bouaam, Hind
    Temghart, Said Ait
    Allalou, Chakir
    Melliani, Said
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [44] Numerical Solution of the Schrodinger-Maxwell equations (with a general nonlinear term) via Finite Elements and Genetic Algorithms with Nelder-Mead
    Mastorakis, Ntkos E.
    PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON FINITE DIFFERENCES, FINITE ELEMENTS, FINITE VOLUMES, BOUNDARY ELEMENTS, 2009, : 73 - 80
  • [45] Extremal problems of Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds
    Zhang, Shutao
    Han, Yazhou
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (02)
  • [46] Semilinear elliptic problems and concentration compactness on non-compact Riemannian manifolds
    Fieseler K.H.
    Tintarev K.
    The Journal of Geometric Analysis, 2003, 13 (1): : 67 - 75
  • [47] On locally homogeneous pseudo-Riemannian compact Einstein manifolds
    Bochenski, Maciej
    Tralle, Aleksy
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 155
  • [48] On the Lr Hodge theory in complete non compact Riemannian manifolds
    Amar, Eric
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (3-4) : 751 - 795
  • [49] On thep-Laplacian Lichnerowicz equation on compact Riemannian manifolds
    Chen, Nanbo
    Liu, Xiaochun
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) : 2249 - 2274
  • [50] Positive solutions for double singularly perturbed Schrodinger Maxwell systems
    Ghimenti, Marco
    Micheletti, Anna Maria
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 174 : 223 - 241