Small Object Detection Method based on Improved YOLOv5

被引:4
作者
Gao, Tianyu [1 ]
Wushouer, Mairidan [1 ]
Tuerhong, Gulanbaier [1 ]
机构
[1] Xinjiang Univ, Sch Informat Sci & Engn, Urumqi, Peoples R China
来源
2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI | 2022年
关键词
component; deep learning; aerial image; small object detection; YOLOv5;
D O I
10.1109/VRHCIAI57205.2022.00032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An improved small object detection method based on YOLOv5 algorithm is presented to solve the problems of dense and uneven small target samples, less extractable feature information and susceptible to background interference in aerial images taken by unmanned aerial vehicles. Firstly, CBAM attention mechanism is introduced into the network Secondly, a new small object detection layer is added to realize four detection structures to recognize different size objects, to increase the ability to detect small and weak objects. Finally, in the post-processing section, EIoU_Loss is used to instead GIoU_ Loss as a loss function of bounding box regression in order to increase the speed of bounding box regression and increase positioning precision. Experiments on the public dataset VisDrone, demonstrate that this method's average accuracy is 36.7%, which is 7.6% more effective than the standard procedure. The results show that the method proposed in this paper has good performance for UAV small object detection tasks.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 24 条
[1]  
Akyon F C, 2022, SLICING AIDED INFERE
[2]  
Chen ke-qi, 2021, Journal of Software, P1201, DOI 10.13328/j.cnki.jos.006166
[3]  
Chen S., 2022, ELECTROOPTICANDCONTR, V29
[4]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226
[5]  
Fan Y., 2022, CHINATEST, V48, P90
[6]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[7]  
He F, 2022, ELECT MEAS TECHNOL, V45, P50
[8]  
Liang Z., 2021, SURVEYING MAPPING B, P111
[9]  
LinT Y, 1I 2017IEEECONFERENC
[10]  
Liu S, 2018, 11 2018 IEEECVF CONF