ON THE GIERER-MEINHARDT SYSTEM WITH PRECURSORS

被引:24
作者
Wei, Juncheng [1 ]
Winter, Matthias [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
关键词
Pattern formation; mathematical biology; singular perturbation; precursor; NONLINEAR SCHRODINGER-EQUATIONS; BIOLOGICAL PATTERN-FORMATION; PERTURBED NEUMANN PROBLEMS; REACTION-DIFFUSION SYSTEM; INTERIOR SPIKE SOLUTIONS; CAHN-HILLIARD EQUATION; LEAST-ENERGY SOLUTIONS; PEAK SOLUTIONS; BOUND-STATES; STABILITY;
D O I
10.3934/dcds.2009.25.363
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following Gierer-Meinhardt system with a precursor mu(x) for the activator A in R-1: {A(t) = epsilon(2)A '' - mu(x)A + A(2)/H in (-1, 1), tau H-t = DH '' ' -H + A(2) in (-1, 1), A'(-1) = A'(1) = H'(-1) = H'(1) = 0. Such an equation exhibits a typical Turing bifurcation of the second kind, i.e., homogeneous uniform steady states do not exist in the system. We establish the existence and stability of N-peaked steady-states in terms of the precursor mu(x) and the diffusion coefficient D. It is shown that mu(x) plays an essential role for both existence and stability of spiky patterns. In particular, we show that precursors can give rise to instability. This is a new effect which is not present in the homogeneous case.
引用
收藏
页码:363 / 398
页数:36
相关论文
共 41 条
[1]  
[Anonymous], 1995, JPN J IND APPL MATH
[2]  
[Anonymous], 1998, Not. Am. Math. Soc.
[3]  
[Anonymous], 2001, Methods Appl. Anal
[4]   Unravelling the Turing bifurcation using spatially varying diffusion coefficients [J].
Benson, DL ;
Maini, PK ;
Sherratt, JA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 37 (05) :381-417
[5]  
Doelman A., 2001, Methods Appl. Anal, V8, P387, DOI DOI 10.4310/MAA.2001.V8.N3.A2
[6]   NONSPREADING WAVE-PACKETS FOR THE CUBIC SCHRODINGER-EQUATION WITH A BOUNDED POTENTIAL [J].
FLOER, A ;
WEINSTEIN, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :397-408
[7]  
Gidas B., 1981, Math. Anal. Appl. Part A: Adv. Math. Suppl. Stud., V7, P369
[8]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[9]   Multiple interior peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (01) :1-27
[10]   Multiple boundary peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC ;
Winter, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (01) :47-82