Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint

被引:326
|
作者
Zhao, Yong-Qiang [1 ]
Yang, Jingxiang [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 01期
关键词
Global redundancy and correlation (RAC); hyperspectral image (HSI) denoising; local RAC; low rank; sparse representation; JOINT-SPARSE; ALGORITHM; SIGNAL; OPTIMIZATION;
D O I
10.1109/TGRS.2014.2321557
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) denoising is an essential preprocess step to improve the performance of subsequent applications. For HSI, there is much global and local redundancy and correlation (RAC) in spatial/spectral dimensions. In addition, denoising performance can be improved greatly if RAC is utilized efficiently in the denoising process. In this paper, an HSI denoising method is proposed by jointly utilizing the global and local RAC in spatial/spectral domains. First, sparse coding is exploited to model the global RAC in the spatial domain and local RAC in the spectral domain. Noise can be removed by sparse approximated data with learned dictionary. At this stage, only local RAC in the spectral domain is employed. It will cause spectral distortion. To compensate the shortcoming of local spectral RAC, low-rank constraint is used to deal with the global RAC in the spectral domain. Different hyperspectral data sets are used to test the performance of the proposed method. The denoising results by the proposed method are superior to results obtained by other state-of-the-art hyperspectral denoising methods.
引用
收藏
页码:296 / 308
页数:13
相关论文
共 50 条
  • [21] Adaptive Boosting for Image Denoising: Beyond Low-Rank Representation and Sparse Coding
    Wang, Bo
    Lu, Tao
    Xiong, Zixiang
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1400 - 1405
  • [22] NON-LINEAR LOW-RANK AND SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE ANALYSIS
    de Morsier, Frank
    Tuia, Devis
    Borgeaud, Maurice
    Gass, Volker
    Thiran, Jean-Philippe
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [23] HYPERSPECTRAL IMAGE DENOISING USING LOW-RANK AND SPARSE MODEL BASED DEEP UNROLLING
    Zhao, Bin
    Ulfarsson, Magnus O.
    Sigurdsson, Jakob
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5818 - 5821
  • [24] Hyperspectral Image Denoising via Weighted Multidirectional Low-Rank Tensor Recovery
    Su, Yanchi
    Zhu, Haoran
    Wong, Ka-Chun
    Chang, Yi
    Li, Xiangtao
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (05) : 2753 - 2766
  • [25] Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition
    Xie, Ting
    Li, Shutao
    Sun, Bin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 44 - 56
  • [26] Denoising of Hyperspectral Images Using Group Low-Rank Representation
    Wang, Mengdi
    Yu, Jing
    Xue, Jing-Hao
    Sun, Weidong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (09) : 4420 - 4427
  • [27] Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation
    Xu, Yang
    Wu, Zebin
    Li, Jun
    Plaza, Antonio
    Wei, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04): : 1990 - 2000
  • [28] Double Low-Rank Matrix Decomposition for Hyperspectral Image Denoising and Destriping
    Zhang, Hongyan
    Cai, Jingyi
    He, Wei
    Shen, Huanfeng
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] Hyperspectral image denoising based on low-rank coefficients and orthonormal dictionary
    Zhang, Fanlong
    Yang, Guowei
    Xue, Jing-Hao
    SIGNAL PROCESSING, 2020, 177
  • [30] Hyperspectral Image Denoising Using Improved Low-Rank and Sparsity Constraints
    Zhong, Chongxiao
    Zhang, Junping
    Guo, Qingle
    EARTH OBSERVING SYSTEMS XXIII, 2018, 10764