Template-Free Fabrication of Highly-Oriented Single-Crystalline 1D-Rutile TiO2-MWCNT Composite for Enhanced Photoelectrochemical Activity

被引:41
作者
Sadhu, Subha [1 ,2 ]
Poddar, Pankaj [1 ,2 ,3 ]
机构
[1] Natl Chem Lab, CSIR, Phys & Mat Chem Div, Pune 411008, Maharashtra, India
[2] Acad Sci & Innovat Res, New Delhi 110001, India
[3] Natl Chem Lab, CSIR, Ctr Excellence Surface Sci, Pune 411008, Maharashtra, India
关键词
SOLAR-CELLS; CARBON NANOTUBES; ANATASE TIO2; GROWTH; ARRAYS; NANOPARTICLES; PHOTOANODES; MECHANISM; TEXTURE; DESIGN;
D O I
10.1021/jp5023983
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Template-free synthesis of phase pure one-dimensional (1D), single crystalline rutile titania nanorods or wires at low temperature still remains a challenging task due to its complex nature of surface chemistry. In these ID structures, charge transport is highly favored. To further modify the electrical conductivity and optoelectronic properties of these 1D nanostructures, various methods such as doping of TiO2 with metal and nonmetal and synthesis of branched and hybrid structures are developed. If these hybrid structures can directly synthesize on the substrate, the transport of the electron will improve due to reduced grain boundary and exciton recombination. In this contribution, for the first time, we have simultaneously synthesized 1D-rutile TiO2-multiwalled carbon nanotube (MWCNT) composite film directly grown on fluorine dope conducting oxide (FTO) substrate along with 1D-rutile TiO2-MWCNT composite powder. The as-grown nanorods films were single-crystalline and oriented vertically with respect to the substrate, having an average height of similar to 2 mu m. The well connected network of TiO2 with MWCNTs was observed through electron microscopy. The composite film shows positive movement of the flat-band edge and increase in charge carrier density. The TiO2-MWCNT composite was successfully used as photoanode in a dye sensitized solar cell (DSSC) and exhibits a 60% increase in energy-conversion efficiency compared with only TiO2 nanorods.
引用
收藏
页码:19363 / 19373
页数:11
相关论文
共 48 条
[1]   A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures [J].
Amin, Syed S. ;
Nicholls, Alan W. ;
Xu, Terry T. .
NANOTECHNOLOGY, 2007, 18 (44)
[2]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[3]   Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe [J].
Bang, Jin Ho ;
Kamat, Prashant V. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (12) :1970-1976
[4]   Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms [J].
Benkstein, KD ;
Semancik, S .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 113 (01) :445-453
[5]   TIO2 PIGMENT TECHNOLOGY - A REVIEW [J].
BRAUN, JH ;
BAIDINS, A ;
MARGANSKI, RE .
PROGRESS IN ORGANIC COATINGS, 1992, 20 (02) :105-138
[6]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[7]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[8]   One-Step Preparation of Graphene-Supported Anatase TiO2 with Exposed {001} Facets and Mechanism of Enhanced Photocatalytic Properties [J].
Gu, Liuan ;
Wang, Jingyu ;
Cheng, Hao ;
Zhao, Yizhi ;
Liu, Lifei ;
Han, Xijiang .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) :3085-3093
[9]  
Iijima S., 1991, NATURE, V354, P397
[10]   Core-Shell Structured Silicon Nanoparticles@TiO2-x/Carbon Mesoporous Microfiber Composite as a Safe and High-Performance Lithium-Ion Battery Anode [J].
Jeong, Goojin ;
Kim, Jae-Geun ;
Park, Min-Sik ;
Seo, Minsu ;
Hwang, Soo Min ;
Kim, Young-Ugk ;
Kim, Young-Jun ;
Kim, Jung Ho ;
Dou, Shi Xue .
ACS NANO, 2014, 8 (03) :2977-2985