Modular networks with delayed coupling: Synchronization and frequency control

被引:17
作者
Maslennikov, Oleg V. [1 ,2 ]
Nekorkin, Vladimir I. [1 ,2 ]
机构
[1] RAS, Inst Appl Phys, Nizhnii Novgorod, Russia
[2] NI Lobachevskii State Univ, Nizhnii Novgorod, Russia
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 01期
基金
俄罗斯科学基金会;
关键词
WORLD NEURONAL NETWORKS; DISCRETE MODEL; TIME-DELAY; TRANSITIONS;
D O I
10.1103/PhysRevE.90.012901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdos-Renyi network, a small-world Watts-Strogatz network, and a scale-free Barabasi-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Phase synchronization of bursting neurons in clustered small-world networks [J].
Batista, C. A. S. ;
Lameu, E. L. ;
Batista, A. M. ;
Lopes, S. R. ;
Pereira, T. ;
Zamora-Lopez, G. ;
Kurths, J. ;
Viana, R. L. .
PHYSICAL REVIEW E, 2012, 86 (01)
[4]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[5]   Chaotic oscillations in a map-based model of neural activity [J].
Courbage, M. ;
Nekorkin, V. I. ;
Vdovin, L. V. .
CHAOS, 2007, 17 (04)
[6]   Synchronization in time-discrete model of two electrically coupled spike-bursting neurons [J].
Courbage, M. ;
Maslennikov, O. V. ;
Nekorkin, V. I. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (05) :645-659
[7]  
ERDOS P, 1960, B INT STATIST INST, V38, P343
[8]  
Feldman M N., 1984, Cellular components o fthe cerebral cortex
[9]   Community structure in social and biological networks [J].
Girvan, M ;
Newman, MEJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7821-7826
[10]   Nonlocal mechanism for cluster synchronization in neural circuits [J].
Kanter, I. ;
Kopelowitz, E. ;
Vardi, R. ;
Zigzag, M. ;
Kinzel, W. ;
Abeles, M. ;
Cohen, D. .
EPL, 2011, 93 (06)