Handling missing data in clinical research

被引:108
作者
Heymans, Martijn W. [1 ]
Twisk, Jos W. R. [1 ,2 ]
机构
[1] Amsterdam UMC, Dept Epidemiol & Data Sci, Amsterdam, Netherlands
[2] Amsterdam UMC, Dept Epidemiol & Data Sci, De Boelelaan 1089a, NL-1081 HV Amsterdam, Netherlands
关键词
MULTIPLE IMPUTATION; VALUES;
D O I
10.1016/j.jclinepi.2022.08.016
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Because missing data are present in almost every study, it is important to handle missing data properly. First of all, the missing data mechanism should be considered. Missing data can be either completely at random (MCAR), at random (MAR), or not at random (MNAR). When missing data are MCAR, a complete case analysis can be valid. Also when missing data are MAR, in some situations a complete case analysis leads to valid results. However, in most situations, missing data imputation should be used. Regarding imputation methods, it is highly advised to use multiple imputations because multiple imputations lead to valid estimates including the uncertainty about the imputed values. When missing data are MNAR, also multiple imputations do not lead to valid results. A complication hereby is that it not possible to distinguish whether missing data are MAR or MNAR. Finally, it should be realized that preventing to have missing data is always better than the treatment of missing data. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:185 / 188
页数:4
相关论文
共 50 条
  • [41] Strategies for handling missing data in longitudinal studies with questionnaires
    Nooraee, Nazanin
    Molenberghs, Geert
    Ormel, Johan
    van den Heuvel, Edwin R.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (17) : 3415 - 3436
  • [42] Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis
    Groenwold, Rolf H. H.
    White, Ian R.
    Donders, Rogier T.
    Carpenter, James R.
    Altman, Douglas G.
    Moons, Karel G. M.
    [J]. CANADIAN MEDICAL ASSOCIATION JOURNAL, 2012, 184 (11) : 1265 - 1269
  • [43] What Is Missing in Counseling Research? Reporting Missing Data
    Sterner, William R.
    [J]. JOURNAL OF COUNSELING AND DEVELOPMENT, 2011, 89 (01) : 56 - 62
  • [44] Tensor-Based Methods for Handling Missing Data in Quality-of-Life Questionnaires
    Garg, Lalit
    Dauwels, Justin
    Earnest, Arul
    Leong, Khai Pang
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (05) : 1571 - 1580
  • [45] Common Methods for Handling Missing Data in Marginal Structural Models: What Works and Why
    Leyrat, Clemence
    Carpenter, James R.
    Bailly, Sebastien
    Williamson, Elizabeth J.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (04) : 663 - 672
  • [46] Semiparametric Fractional Imputation Using Gaussian Mixture Models for Handling Multivariate Missing Data
    Sang, Hejian
    Kim, Jae Kwang
    Lee, Danhyang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (538) : 654 - 663
  • [47] Addressing Missing Data in Clinical Studies of Kidney Diseases
    Montez-Rath, Maria E.
    Winkelmayer, Wolfgang C.
    Desai, Manisha
    [J]. CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2014, 9 (07): : 1328 - 1335
  • [48] Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies
    Kieu Trinh Do
    Wahl, Simone
    Raffler, Johannes
    Molnos, Sophie
    Laimighofer, Michael
    Adamski, Jerzy
    Suhre, Karsten
    Strauch, Konstantin
    Peters, Annette
    Gieger, Christian
    Langenberg, Claudia
    Stewart, Isobel D.
    Theis, Fabian J.
    Grallert, Harald
    Kastenmueller, Gabi
    Krumsiek, Jan
    [J]. METABOLOMICS, 2018, 14 (10)
  • [49] Advanced statistics: Missing data in clinical research - Part 2: Multiple imputation
    Newgard, Craig D.
    Haukoos, Jason S.
    [J]. ACADEMIC EMERGENCY MEDICINE, 2007, 14 (07) : 669 - 678
  • [50] Hot Deck Multiple Imputation for Handling Missing Accelerometer Data
    Nicole M. Butera
    Siying Li
    Kelly R. Evenson
    Chongzhi Di
    David M. Buchner
    Michael J. LaMonte
    Andrea Z. LaCroix
    Amy Herring
    [J]. Statistics in Biosciences, 2019, 11 : 422 - 448