Handling missing data in clinical research

被引:108
作者
Heymans, Martijn W. [1 ]
Twisk, Jos W. R. [1 ,2 ]
机构
[1] Amsterdam UMC, Dept Epidemiol & Data Sci, Amsterdam, Netherlands
[2] Amsterdam UMC, Dept Epidemiol & Data Sci, De Boelelaan 1089a, NL-1081 HV Amsterdam, Netherlands
关键词
MULTIPLE IMPUTATION; VALUES;
D O I
10.1016/j.jclinepi.2022.08.016
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Because missing data are present in almost every study, it is important to handle missing data properly. First of all, the missing data mechanism should be considered. Missing data can be either completely at random (MCAR), at random (MAR), or not at random (MNAR). When missing data are MCAR, a complete case analysis can be valid. Also when missing data are MAR, in some situations a complete case analysis leads to valid results. However, in most situations, missing data imputation should be used. Regarding imputation methods, it is highly advised to use multiple imputations because multiple imputations lead to valid estimates including the uncertainty about the imputed values. When missing data are MNAR, also multiple imputations do not lead to valid results. A complication hereby is that it not possible to distinguish whether missing data are MAR or MNAR. Finally, it should be realized that preventing to have missing data is always better than the treatment of missing data. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:185 / 188
页数:4
相关论文
共 50 条
  • [31] Generative adversarial networks for imputing missing data for big data clinical research
    Dong, Weinan
    Fong, Daniel Yee Tak
    Yoon, Jin-sun
    Wan, Eric Yuk Fai
    Bedford, Laura Elizabeth
    Tang, Eric Ho Man
    Lam, Cindy Lo Kuen
    BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [32] Handling Missing Data in Health Economics and Outcomes Research (HEOR): A Systematic Review and Practical Recommendations
    Mukherjee, Kumar
    Gunsoy, Necdet B.
    Kristy, Rita M.
    Cappelleri, Joseph C.
    Roydhouse, Jessica
    Stephenson, Judith J.
    Vanness, David J.
    Ramachandran, Sujith
    Onwudiwe, Nneka C.
    Pentakota, Sri Ram
    Karcher, Helene
    Di Tanna, Gian Luca
    PHARMACOECONOMICS, 2023, 41 (12) : 1589 - 1601
  • [33] Handling missing data in longitudinal clinical trials: three examples from the pediatric psychology literature
    Peugh, James
    Mara, Constance
    JOURNAL OF PEDIATRIC PSYCHOLOGY, 2024,
  • [34] Evaluating missing data handling methods for developing building energy benchmarking models
    Lee, Kyungjae
    Lim, Hyunwoo
    Hwang, Jeongyun
    Lee, Doyeon
    ENERGY, 2024, 308
  • [35] Handling missing data in a rheumatoid arthritis registry using random forest approach
    Alsaber, Ahmad
    Al-Herz, Adeeba
    Pan, Jiazhu
    AL-Sultan, Ahmad T.
    Mishra, Divya
    INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, 2021, 24 (10) : 1282 - 1293
  • [36] A framework for handling missing accelerometer outcome data in trials
    Tackney, Mia S.
    Cook, Derek G.
    Stahl, Daniel
    Ismail, Khalida
    Williamson, Elizabeth
    Carpenter, James
    TRIALS, 2021, 22 (01)
  • [37] A framework for handling missing accelerometer outcome data in trials
    Mia S. Tackney
    Derek G. Cook
    Daniel Stahl
    Khalida Ismail
    Elizabeth Williamson
    James Carpenter
    Trials, 22
  • [38] Comparative methods for handling missing data in large databases
    Henry, Antonia J.
    Hevelone, Nathanael D.
    Lipsitz, Stuart
    Nguyen, Louis L.
    JOURNAL OF VASCULAR SURGERY, 2013, 58 (05) : 1353 - +
  • [39] Handling planned and unplanned missing data in a longitudinal study
    Caron-Diotte, Mathieu
    Pelletier-Dumas, Mathieu
    Lacourse, Eric
    Dorfman, Anna
    Stolle, Dietlind
    Lina, Jean -Marc
    de la Sablonniere, Roxane
    QUANTITATIVE METHODS FOR PSYCHOLOGY, 2023, 19 (02): : 123 - 135
  • [40] Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
    Sterne, Jonathan A. C.
    White, Ian R.
    Carlin, John B.
    Spratt, Michael
    Royston, Patrick
    Kenward, Michael G.
    Wood, Angela M.
    Carpenter, James R.
    BMJ-BRITISH MEDICAL JOURNAL, 2009, 339 : 157 - 160