Polyaniline nanostructures expedient as working electrode materials in supercapacitors

被引:20
作者
Gedela, Venkata Ramana [1 ]
Srikanth, Vadali Venkata Satya Siva [1 ]
机构
[1] Univ Hyderabad, Sch Engn Sci & Technol, Hyderabad 500046, Andhra Pradesh, India
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2014年 / 115卷 / 01期
关键词
CONDUCTING POLYANILINE; NANOFIBERS; POLYMERIZATION; MORPHOLOGY; POLYMERS; PERFORMANCE; NANOTUBES;
D O I
10.1007/s00339-013-7920-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Granular type polyaniline (PANi), PANi nanofibers (NFs), and PANi nanotubes (NTs) expedient as working electrode materials for supercapacitors are synthesized. The synthesis procedure used in this work facilitates not only the synthesis of solid powders of the PANi nanostructures, but also thin films constituted by the same PANi nanostructures in the same experiment. PANi NFs are found to exhibit faster electrode kinetics and better capacitance when compared to PANi NTs and granular PANi. Specific capacitance and energy storage per unit mass of PANi NFs are 239.47 Fg(-1) (at 0.5 Ag-1) and 43.2 Wh kg(-1), respectively. Electrical conductivity of PANi NFs is also better when compared to the other two nanostructures. Properties of the three PANi nanostructures are explicated in correlation with crystallinity, intrinsic oxidation state, doping degree, BET surface area, and ordered mesoporosity pertaining to the nanostructures.
引用
收藏
页码:189 / 197
页数:9
相关论文
共 54 条
[1]   Electrochemical supercapacitor application of electroless surface polymerization of polyaniline nanostructures [J].
Amarnath, Chellachamy A. ;
Chang, Jin Ho ;
Kim, Doyoung ;
Mane, Rajaram S. ;
Han, Sung-Hwan ;
Sohn, Daewon .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 113 (01) :14-17
[2]   Conducting polymers in microelectronics [J].
Angelopoulos, M .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) :57-75
[3]   ELECTRODEPOSITION OF POLYMER-COATINGS [J].
BECK, F .
ELECTROCHIMICA ACTA, 1988, 33 (07) :839-850
[4]   Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing [J].
Berti, Francesca ;
Todros, Silvia ;
Lakshmi, Dhana ;
Whitcombe, Michael J. ;
Chianella, Iva ;
Ferroni, Matteo ;
Piletsky, Sergey A. ;
Turner, Anthony P. F. ;
Marrazza, Giovanna .
BIOSENSORS & BIOELECTRONICS, 2010, 26 (02) :497-503
[5]   De-doped polyaniline nanofibres with micropores for high-rate aqueous electrochemical capacitor [J].
Bian, Chaoqing ;
Yu, Aishui .
SYNTHETIC METALS, 2010, 160 (13-14) :1579-1583
[6]  
Chandrasekhar P., 1999, Conducting Polymers, Fundamentals and Applications: A Practical Approach
[7]   Polyaniline nanostructures doped with mono-sulfonated dendrons via a self-assembly process [J].
Cheng, CX ;
Jiang, J ;
Tang, RP ;
Xi, F .
SYNTHETIC METALS, 2004, 145 (01) :61-65
[8]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[9]  
Ciric-Marjanovic G., 2010, Nanostructured Conductive Polymers
[10]   Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application [J].
Dhawale, D. S. ;
Dubal, D. P. ;
Jamadade, V. S. ;
Salunkhe, R. R. ;
Lokhande, C. D. .
SYNTHETIC METALS, 2010, 160 (5-6) :519-522