LARGE DEVIATIONS FOR SYMMETRIC STABLE PROCESSES WITH FEYNMAN-KAC FUNCTIONALS AND ITS APPLICATION TO PINNED POLYMERS

被引:3
作者
Nishimori, Yasuhito [1 ]
机构
[1] Anan Natl Coll Technol, Anan, Tokushima 7740017, Japan
关键词
Pinned polymer; large deviations; Dirichlet form; symmetric stable process; additive functional; ADDITIVE-FUNCTIONALS; GAUGEABILITY;
D O I
10.2748/tmj/1386354291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let v and mu be positive Radon measures on R-d in Green-tight Kato class associated with a symmetric alpha-stable process (X-t, P-x) on R-d, and A(t)(v) and A(t)(mu) the positive continuous additive functionals under the Revuz correspondence to v and mu. For a non-negative beta, let P-x,t(beta mu) be the law X-t weighted by the Feynman-Kac functional exp(beta A(t)(mu)), i.e., P-x,t(mu) = (Z(x,t)(mu))(-1) exp(beta A(t)(mu))P-x, where Z(x,t)(mu) is a normalizing constant. We show that A(t)(v)/t obeys the large deviation principle under P-x,t(beta mu). We apply it to a polymer model to identify the critical value beta(cr) such that the polymer is pinned under the law P-x,t(beta mu) if and only if beta is greater than beta(cr). The value beta(cr) is characterized by the rate function.
引用
收藏
页码:467 / 494
页数:28
相关论文
共 24 条
[1]  
Albeverio S., 1991, Random Partial Differential Equations, P1
[2]   Pinning of polymers and interfaces by random potentials [J].
Alexander, Kenneth S. ;
Sidoravicius, Vladas .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (02) :636-669
[3]  
[Anonymous], 1998, CONTINUOUS MARTINGAL
[4]  
[Anonymous], 1994, DIRICHLET FORMS SYMM
[5]   The spectral function and principal eigenvalues for Schrodinger operators [J].
Arendt, W ;
Batty, CJK .
POTENTIAL ANALYSIS, 1997, 7 (01) :415-436
[6]  
Bogdan K., 2000, Probab. Math. Statist., V20, P293
[7]   Gaugeability and conditional gaugeability [J].
Chen, ZQ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) :4639-4679
[8]  
Cranston M, 2007, CRM PROC & LECT NOTE, V42, P97
[9]   Continuous model for homopolymers [J].
Cranston, M. ;
Koralov, L. ;
Molchanov, S. ;
Vainberg, B. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) :2656-2696
[10]  
Davis E. B., 1989, CAMBRIDGE TRACS MATH, V92