Template-free synthesis of porous-LiFePO4/C nanocomposite for high power lithium-ion batteries

被引:20
作者
Du, Jing [1 ]
Kong, Ling-Bin [1 ,2 ]
Liu, Hong [1 ]
Liu, Jin-Bei [1 ]
Liu, Mao-Cheng [1 ]
Zhang, Peng [1 ]
Luo, Yong-Chun [2 ]
Kang, Long [2 ]
机构
[1] Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Sch Mat Sci & Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesoporous LiFePO4/C; Template-free; High rate capability; LIFEPO4 ELECTRODE MATERIALS; CATHODE MATERIALS; MESOPOROUS LIFEPO4/C; POSITIVE-ELECTRODE; PHOSPHO-OLIVINES; PERFORMANCE; CARBON; COMPOSITE; POLYMER; IRON;
D O I
10.1016/j.electacta.2013.12.157
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiFePO4 electrode material with large specific surface area and porous structure can achieve high energy and power capabilities, but current synthesis method is relatively complicated. Here, we report a facile synthesis of porous-LiFePO4/C (porous-LFP/C) nanocomposites, which require no templates or surfactants. The synthesized porous-LFP/C material possesses outstanding morphology with nano-sized, spherical particles, a desirable core-shell structure with uniform carbon film on the surface of LiFePO4 and with a specific surface area of 29.9 m(2) g(-1). The as-obtained porous-LFP/C nanocomposites show excellent rate capability and cycling stability. It delivers a discharge capacity of 143 and 126 mAh g(-1) at 5 C and 10 C rates, respectively, and exhibits desirable capacity retention after 500 cycles. Remarkably, it performed well even at 30 C (83 mAh g(-1)) with the 91% of initial capacity after 1000 cycles. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 40 条
[1]   Generation of hierarchical meso- and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates [J].
Adelhelm, Philipp ;
Hu, Yong-Sheng ;
Chuenchom, Laemthong ;
Antonietti, Markus ;
Smarsly, Bernd M. ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (22) :4012-+
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[4]   Template-directed materials for rechargeable lithium-ion batteries [J].
Cheng, Fangyi ;
Tao, Zhanliang ;
Liang, Jing ;
Chen, Jun .
CHEMISTRY OF MATERIALS, 2008, 20 (03) :667-681
[5]   Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Li, Xi-Li ;
Liu, Hai-Jing ;
Xiong, Huan-Ming ;
Zhang, Ping-Wei ;
Xia, Yong-Yao .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (07) :A692-A697
[6]   Defect-free solvothermally assisted synthesis of microspherical mesoporous LiFePO4/C [J].
Cho, Min-Young ;
Kim, Kwang-Bum ;
Lee, Jae-Won ;
Kim, Haegyeom ;
Kim, Hyungsub ;
Kang, Kisuk ;
Roh, Kwang Chul .
RSC ADVANCES, 2013, 3 (10) :3421-3427
[7]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[8]   High performance LiFePO4 electrode materials: influence of colloidal particle morphology and porosity on lithium-ion battery power capability [J].
Doherty, Cara M. ;
Caruso, Rachel A. ;
Drummond, Calum J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (06) :813-823
[9]   Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries [J].
Doherty, Cara M. ;
Caruso, Rachel A. ;
Smarsly, Bernd M. ;
Adelhelm, Philipp ;
Drummond, Calum J. .
CHEMISTRY OF MATERIALS, 2009, 21 (21) :5300-5306
[10]   Colloidal Crystal Templating to Produce Hierarchically Porous LiFePO4 Electrode Materials for High Power Lithium Ion Batteries [J].
Doherty, Cara M. ;
Caruso, Rachel A. ;
Smarsly, Bernd M. ;
Drummond, Calum J. .
CHEMISTRY OF MATERIALS, 2009, 21 (13) :2895-2903