A Deep Learning-Based Cryptocurrency Price Prediction Model That Uses On-Chain Data

被引:16
|
作者
Kim, Gyeongho [1 ]
Shin, Dong-Hyun [2 ]
Choi, Jae Gyeong [1 ]
Lim, Sunghoon [1 ,3 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Ind Engn, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol, Dept Biomed Engn, Ulsan 44919, South Korea
[3] Ulsan Natl Inst Sci & Technol, Inst Ind Revolut 4, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Cryptocurrency; Blockchains; Predictive models; Investment; Bitcoin; Gold; Data models; Blockchain; cryptocurrency; deep learning; prediction methods; change detection algorithms;
D O I
10.1109/ACCESS.2022.3177888
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cryptocurrency has recently attracted substantial interest from investors due to its underlying philosophy of decentralization and transparency. Considering cryptocurrency's volatility and unique characteristics, accurate price prediction is essential for developing successful investment strategies. To this end, the authors of this work propose a novel framework that predicts the price of Bitcoin (BTC), a dominant cryptocurrency. For stable prediction performance in unseen price range, the change point detection technique is employed. In particular, it is used to segment time-series data so that normalization can be separately conducted based on segmentation. In addition, on-chain data, the unique records listed on the blockchain that are inherent in cryptocurrencies, are collected and utilized as input variables to predict prices. Furthermore, this work proposes self-attention-based multiple long short-term memory (SAM-LSTM), which consists of multiple LSTM modules for on-chain variable groups and the attention mechanism, for the prediction model. Experiments with real-world BTC price data and various method setups have proven the proposed framework's effectiveness in BTC price prediction. The results are promising, with the highest MAE, RMSE, MSE, and MAPE values of 0.3462, 0.5035, 0.2536, and 1.3251, respectively.
引用
收藏
页码:56232 / 56248
页数:17
相关论文
共 50 条
  • [41] Cryptocurrency Price Prediction Model Based on Sentiment Analysis and Social Influence
    Feizian, Fatemeh
    Amiri, Babak
    IEEE ACCESS, 2023, 11 : 142177 - 142195
  • [42] A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme
    Lao, Jiangwei
    Chen, Yinsheng
    Li, Zhi-Cheng
    Li, Qihua
    Zhang, Ji
    Liu, Jing
    Zhai, Guangtao
    SCIENTIFIC REPORTS, 2017, 7
  • [43] A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme
    Jiangwei Lao
    Yinsheng Chen
    Zhi-Cheng Li
    Qihua Li
    Ji Zhang
    Jing Liu
    Guangtao Zhai
    Scientific Reports, 7
  • [44] A Deep Learning-Based Soft Sensing Prediction Model for Tubular Furnace
    Wang, Xiaowen
    Zhang, Yongjun
    Guo, Qiang
    Zhang, Fei
    Yildirim, Tanju
    2022 INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML, 2022, : 13 - 21
  • [45] A deep learning-based model for prediction of hemorrhagic transformation after stroke
    Jiang, Liang
    Zhou, Leilei
    Yong, Wei
    Cui, Jinluan
    Geng, Wen
    Chen, Huiyou
    Zou, Jianjun
    Chen, Yang
    Yin, Xindao
    Chen, Yu-Chen
    BRAIN PATHOLOGY, 2023, 33 (02)
  • [46] Harnessing technical indicators with deep learning based price forecasting for cryptocurrency trading☆
    Kang, Mingu
    Hong, Joongi
    Kim, Suntae
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 660
  • [47] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [48] An Efficient Outlier Detection with Deep Learning-Based Financial Crisis Prediction Model in Big Data Environment
    Venkateswarlu, Yalla
    Baskar, K.
    Wongchai, Anupong
    Shankar, Venkatesh Gauri
    Martel Carranza, Christian Paolo
    Arias Gonzales, Jose Luis
    Dharan, A. R. Murali
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [49] The Credibility Measurement Model of Food Safety On-chain Data based on Blockchain
    Tao, Hongwei
    Hu, Yinghui
    Li, Hui
    Fan, Deqiang
    Chen, Haoran
    JOURNAL OF INTERNET TECHNOLOGY, 2022, 23 (04): : 719 - 725
  • [50] Prediction of Cryptocurrency Mining Load Tripping Through Learning-Based Fault Classification
    Samanta, Anindita
    Zhang, Qian
    Xie, Le
    2024 IEEE TEXAS POWER AND ENERGY CONFERENCE, TPEC, 2024, : 536 - 541