Generative modeling of brain maps with spatial autocorrelation

被引:210
|
作者
Burt, Joshua B. [1 ]
Helmer, Markus [2 ]
Shinn, Maxwell [3 ]
Anticevic, Alan [2 ,3 ]
Murray, John D. [1 ,2 ,3 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Psychiat, New Haven, CT 06520 USA
[3] Yale Univ, Interdept Neurosci Program, New Haven, CT 06520 USA
关键词
Large-scale gradients; Spatial autocorrelation; Generative null modeling; Gene set enrichment analysis; CONNECTOME; EXPRESSION; SIMILARITY; GRADIENTS;
D O I
10.1016/j.neuroimage.2020.117038
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Studies of large-scale brain organization have revealed interesting relationships between spatial gradients in brain maps across multiple modalities. Evaluating the significance of these findings requires establishing statistical expectations under a null hypothesis of interest. Through generative modeling of synthetic data that instantiate a specific null hypothesis, quantitative benchmarks can be derived for arbitrarily complex statistical measures. Here, we present a generative null model, provided as an open-access software platform, that generates surrogate maps with spatial autocorrelation (SA) matched to SA of a target brain map. SA is a prominent and ubiquitous property of brain maps that violates assumptions of independence in conventional statistical tests. Our method can simulate surrogate brain maps, constrained by empirical data, that preserve the SA of cortical, subcortical, parcellated, and dense brain maps. We characterize how SA impacts p-values in pairwise brain map comparisons. Furthermore, we demonstrate how SA-preserving surrogate maps can be used in gene set enrichment analyses to test hypotheses of interest related to brain map topography. Our findings demonstrate the utility of SA-preserving surrogate maps for hypothesis testing in complex statistical analyses, and underscore the need to disambiguate meaningful relationships from chance associations in studies of large-scale brain organization.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Modeling the spatial autocorrelation of pelagic fish abundance
    Kleisner, Kristin M.
    Walter, John F., III
    Diamond, Sandra L.
    Die, David J.
    MARINE ECOLOGY PROGRESS SERIES, 2010, 411 : 203 - 213
  • [2] Taxicab crashes modeling with informative spatial autocorrelation
    Ma, Qingyu
    Yang, Hong
    Xie, Kun
    Wang, Zhenyu
    Hu, Xianbiao
    ACCIDENT ANALYSIS AND PREVENTION, 2019, 131 : 297 - 307
  • [3] A Manifold of Spatial Maps in the Brain
    Derdikman, Dori
    Moser, Edvard I.
    SPACE, TIME AND NUMBER IN THE BRAIN: SEARCHING FOR THE FOUNDATIONS OF MATHEMATICAL THOUGHT: AN ATTENTION AND PERFORMANCE SERIES VOLUME, 2011, : 41 - 57
  • [4] A manifold of spatial maps in the brain
    Derdikman, Dori
    Moser, Edvard I.
    TRENDS IN COGNITIVE SCIENCES, 2010, 14 (12) : 561 - 569
  • [5] Modeling spatial distribution of land use taking account of spatial autocorrelation
    Qiu Bingwen
    Wang Qinmin
    GEOINFORMATICS 2006: GEOSPATIAL INFORMATION SCIENCE, 2006, 6420
  • [6] Copyright authentication of digital vector maps based on spatial autocorrelation indices
    Li, An-Bo
    Zhu, A-Xing
    EARTH SCIENCE INFORMATICS, 2019, 12 (04) : 629 - 639
  • [7] Copyright authentication of digital vector maps based on spatial autocorrelation indices
    An-Bo Li
    A-Xing Zhu
    Earth Science Informatics, 2019, 12 : 629 - 639
  • [8] Functional brain networks reflect spatial and temporal autocorrelation
    Maxwell Shinn
    Amber Hu
    Laurel Turner
    Stephanie Noble
    Katrin H. Preller
    Jie Lisa Ji
    Flora Moujaes
    Sophie Achard
    Dustin Scheinost
    R. Todd Constable
    John H. Krystal
    Franz X. Vollenweider
    Daeyeol Lee
    Alan Anticevic
    Edward T. Bullmore
    John D. Murray
    Nature Neuroscience, 2023, 26 : 867 - 878
  • [9] Functional brain networks reflect spatial and temporal autocorrelation
    Shinn, Maxwell
    Hu, Amber
    Turner, Laurel
    Noble, Stephanie
    Preller, Katrin H.
    Ji, Jie Lisa
    Moujaes, Flora
    Achard, Sophie
    Scheinost, Dustin
    Constable, R. Todd
    Krystal, John H.
    Vollenweider, Franz X.
    Lee, Daeyeol
    Anticevic, Alan
    Bullmore, Edward T.
    Murray, John D.
    NATURE NEUROSCIENCE, 2023, 26 (05) : 867 - 878
  • [10] Generative Image Modeling Using Spatial LSTMs
    Theis, Lucas
    Bethge, Matthias
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28