Carbohydrate metabolism during vertebrate appendage regeneration: What is its role? How is it regulated?

被引:43
作者
Love, Nick R. [1 ,2 ,3 ]
Ziegler, Mathias [1 ]
Chen, Yaoyao [2 ,4 ]
Amaya, Enrique [2 ]
机构
[1] Univ Bergen, Dept Mol Biol, Bergen, Norway
[2] Univ Manchester, Healing Fdn Ctr, Fac Life Sci, Manchester, Lancs, England
[3] RIKEN Ctr Dev Biol, Lab Organogenesis & Neurogenesis, Chuo Ku, Kobe, Hyogo, Japan
[4] Univ Cambridge, Wellcome Trust, MRC, Cambridge Stem Cell Inst, Cambridge, England
基金
美国国家科学基金会; 英国惠康基金;
关键词
genetically encoded indicator; glycolysis; metabolism; pentose phosphate pathway; tissue regeneration; Warburg effect; Xenopus tadpole tail regeneration; GLUCOSE-METABOLISM; PYRUVATE-KINASE; XENOPUS; CANCER; GLYCOLYSIS; LEPTIN; MUSCLE; PHOSPHORYLATION; GENOME; MODEL;
D O I
10.1002/bies.201300110
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We recently examined gene expression during Xenopus tadpole tail appendage regeneration and found that carbohydrate regulatory genes were dramatically altered during the regeneration process. In this essay, we speculate that these changes in gene expression play an essential role during regeneration by stimulating the anabolic pathways required for the reconstruction of a new appendage. We hypothesize that during regeneration, cells use leptin, slc2a3, proinsulin, g6pd, hif1 expression, receptor tyrosine kinase (RTK) signaling, and the production of reactive oxygen species (ROS) to promote glucose entry into glycolysis and the pentose phosphate pathway (PPP), thus stimulating macromolecular biosynthesis. We suggest that this metabolic shift is integral to the appendage regeneration program and that the Xenopus model is a powerful experimental system to further explore this phenomenon.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 46 条
[1]   Metabolism in physiological cell proliferation and differentiation [J].
Agathocleous, Michalis ;
Harris, William A. .
TRENDS IN CELL BIOLOGY, 2013, 23 (10) :484-492
[2]   Metabolic differentiation in the embryonic retina [J].
Agathocleous, Michalis ;
Love, Nicola K. ;
Randlett, Owen ;
Harris, Julia J. ;
Liu, Jinyue ;
Murray, Andrew J. ;
Harris, William A. .
NATURE CELL BIOLOGY, 2012, 14 (08) :859-U180
[3]   Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes [J].
Altenberg, B ;
Greulich, KO .
GENOMICS, 2004, 84 (06) :1014-1020
[4]   Bridging the regeneration gap: genetic insights from diverse animal models [J].
Alvarado, Alejandro Sanchez ;
Tsonis, Panagiotis A. .
NATURE REVIEWS GENETICS, 2006, 7 (11) :873-884
[5]   Xenomics [J].
Amaya, E .
GENOME RESEARCH, 2005, 15 (12) :1683-1691
[6]   Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses [J].
Anastasiou, Dimitrios ;
Poulogiannis, George ;
Asara, John M. ;
Boxer, Matthew B. ;
Jiang, Jian-kang ;
Shen, Min ;
Bellinger, Gary ;
Sasaki, Atsuo T. ;
Locasale, Jason W. ;
Auld, Douglas S. ;
Thomas, Craig J. ;
Vander Heiden, Matthew G. ;
Cantley, Lewis C. .
SCIENCE, 2011, 334 (6060) :1278-1283
[7]   Beyond Early Development: Xenopus as an Emerging Model for the Study of Regenerative Mechanisms [J].
Beck, Caroline W. ;
Izpisua Belmonte, Juan Carlos ;
Christen, Bea .
DEVELOPMENTAL DYNAMICS, 2009, 238 (06) :1226-1248
[8]   Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate [J].
Beck, CW ;
Christen, B ;
Slack, JMW .
DEVELOPMENTAL CELL, 2003, 5 (03) :429-439
[9]   Genetically encoded fluorescent indicator for intracellular hydrogen peroxide [J].
Belousov, VV ;
Fradkov, AF ;
Lukyanov, KA ;
Staroverov, DB ;
Shakhbazov, KS ;
Terskikh, AV ;
Lukyanov, S .
NATURE METHODS, 2006, 3 (04) :281-286
[10]  
Berg T.J.L., 2002, BIOCHEMISTRY