Chemometrics in foodomics: Handling data structures from multiple analytical platforms

被引:67
作者
Skov, Thomas [1 ]
Honore, Anders H. [1 ,2 ]
Jensen, Henrik Max [2 ]
Naes, Tormod [1 ,3 ]
Engelsen, Soren B. [1 ]
机构
[1] Univ Copenhagen, Fac Sci, Dept Food Sci, DK-1168 Copenhagen, Denmark
[2] DuPont Nutr Biosci ApS, Adv Anal, DK-8220 Brabrand, Denmark
[3] Nofima, N-1430 As, Norway
关键词
Correlation studies; XC-MS; NMR; Foodomics; Data processing; Data validity; Metabolomics; Multi-block chemometrics; Multivariate data analysis; Pearson correlation; MASS-SPECTROMETRY DATA; PLS-REGRESSION; METABOLOMICS; MULTIBLOCK; H-1-NMR; NORMALIZATION; SPECTROSCOPY; CHALLENGES; BIOMARKERS; SELECTION;
D O I
10.1016/j.trac.2014.05.004
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Foodomics studies are normally concerned with multifactorial problems and it makes good sense to explore and to measure the same samples on complementary, synergistic analytical platforms that comprise multifactorial sensors and separation methods. However, the challenge of exploring, extracting and describing the data increases exponentially. Moreover, the risk of becoming flooded with non-informative data increases concomitantly. Acquisition of data from different analytical platforms provides opportunities for checking the validity of the data, comparing analytical platforms and ensuring proper data (pre)processing - all in the context of correlation studies. We provide practical and pragmatic tools to validate and to deal advantageously with data from more than one analytical platform. We emphasize the need for complementary correlation studies within and between blocks of data to ensure proper data handling, interpretation and dissemination. Correlation studies are a preliminary step prior to multivariate data analysis or as an introduction to more advanced multi-block methods. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 55 条
[1]   1H NMR, GC-EI-TOFMS, and Data Set Correlation for Fruit Metabolomics: Application to Spatial Metabolite Analysis in Melon [J].
Biais, Benoit ;
Allwood, J. William ;
Deborde, Catherine ;
Xu, Yun ;
Maucourt, Mickael ;
Beauvoit, Bertrand ;
Dunn, Warwick B. ;
Jacob, Daniel ;
Goodacre, Royston ;
Rolin, Dominique ;
Moing, Annick .
ANALYTICAL CHEMISTRY, 2009, 81 (08) :2884-2894
[2]   OSTEOARTHRITIS Metabolomic characterization of metabolic phenotypes in OA [J].
Blanco, Francisco J. ;
Ruiz-Romero, Cristina .
NATURE REVIEWS RHEUMATOLOGY, 2012, 8 (03) :130-132
[3]   Multiblock Redundancy Analysis: interpretation tools and application in epidemiology [J].
Bougeard, Stephanie ;
Qannari, El Mostafa ;
Rose, Nicolas .
JOURNAL OF CHEMOMETRICS, 2011, 25 (09) :467-475
[4]  
Bro R, 1996, J CHEMOMETR, V10, P47, DOI 10.1002/(SICI)1099-128X(199601)10:1<47::AID-CEM400>3.0.CO
[5]  
2-C
[6]   The origin of correlations in metabolomics data [J].
Camacho, Diogo ;
de la Fuente, Alberto ;
Mendes, Pedro .
METABOLOMICS, 2005, 1 (01) :53-63
[7]   Algorithms and tools for the preprocessing of LC-MS metabolomics data [J].
Castillo, Sandra ;
Gopalacharyulu, Peddinti ;
Yetukuri, Laxman ;
Oresic, Matej .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 108 (01) :23-32
[8]   Food analysis and Foodomics Foreword [J].
Cifuentes, Alejandro .
JOURNAL OF CHROMATOGRAPHY A, 2009, 1216 (43) :7109-7109
[9]   Statistical total correlation spectroscopy:: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets [J].
Cloarec, O ;
Dumas, ME ;
Craig, A ;
Barton, RH ;
Trygg, J ;
Hudson, J ;
Blancher, C ;
Gauguier, D ;
Lindon, JC ;
Holmes, E ;
Nicholson, J .
ANALYTICAL CHEMISTRY, 2005, 77 (05) :1282-1289
[10]   Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: Application in metabonomic toxicology studies [J].
Crockford, DJ ;
Holmes, E ;
Lindon, JC ;
Plumb, RS ;
Zirah, S ;
Bruce, SJ ;
Rainville, P ;
Stumpf, CL ;
Nicholson, JK .
ANALYTICAL CHEMISTRY, 2006, 78 (02) :363-371