Hybrid graphene plasmonic waveguide modulators

被引:238
作者
Ansell, D. [1 ]
Radko, I. P. [2 ]
Han, Z. [2 ]
Rodriguez, F. J. [1 ]
Bozhevolnyi, S. I. [2 ]
Grigorenko, A. N. [1 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Southern Denmark, Ctr Nano Opt, DK-5230 Odense M, Denmark
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
OPTICAL MODULATOR; PHOTODETECTOR; METAMATERIALS; DEVICES;
D O I
10.1038/ncomms9846
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The unique optical and electronic properties of graphene make possible the fabrication of novel optoelectronic devices. One of the most exciting graphene characteristics is the tunability by gating which allows one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with subwavelength field confinement of plasmonic waveguides remains largely unexplored. Here we report fabrication and study of hybrid graphene-plasmonic waveguide modulators. We consider several types of modulators and identify the most promising one for telecom applications. The modulator working at the telecom range is demonstrated, showing a modulation depth of 40.03 dB mu m(-1) at low gating voltages for an active device area of just 10 mu m(2), characteristics which are already comparable to those of silicon-based waveguide modulators while retaining the benefit of further device miniaturization. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.
引用
收藏
页数:6
相关论文
共 35 条
[1]  
[Anonymous], 1988, SPRINGER TRACTS MODE
[2]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[3]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[4]   Leakage radiation microscopy of surface plasmon polaritons [J].
Drezet, A. ;
Hohenau, A. ;
Koller, D. ;
Stepanov, A. ;
Ditlbacher, H. ;
Steinberger, B. ;
Aussenegg, F. R. ;
Leitner, A. ;
Krenn, J. R. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2008, 149 (03) :220-229
[5]   Strong plasmonic enhancement of photovoltage in graphene [J].
Echtermeyer, T. J. ;
Britnell, L. ;
Jasnos, P. K. ;
Lombardo, A. ;
Gorbachev, R. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Ferrari, A. C. ;
Novoselov, K. S. .
NATURE COMMUNICATIONS, 2011, 2
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]  
Grigorenko AN, 2012, NAT PHOTONICS, V6, P749, DOI [10.1038/NPHOTON.2012.262, 10.1038/nphoton.2012.262]
[8]  
Ju L, 2011, NAT NANOTECHNOL, V6, P630, DOI [10.1038/nnano.2011.146, 10.1038/NNANO.2011.146]
[9]   Photoinduced doping in heterostructures of graphene and boron nitride [J].
Jun, L. ;
Velasco, J., Jr. ;
Huang, E. ;
Kahn, S. ;
Nosiglia, C. ;
Tsai, Hsin-Zon ;
Yang, W. ;
Taniguchi, T. ;
Watanabe, K. ;
Zhang, Y. ;
Zhang, G. ;
Crommie, M. ;
Zettl, A. ;
Wang, F. .
NATURE NANOTECHNOLOGY, 2014, 9 (05) :348-352
[10]   Electrical Control of Optical Plasmon Resonance with Graphene [J].
Kim, Jonghwan ;
Son, Hyungmok ;
Cho, David J. ;
Geng, Baisong ;
Regan, Will ;
Shi, Sufei ;
Kim, Kwanpyo ;
Zettl, Alex ;
Shen, Yuen-Ron ;
Wang, Feng .
NANO LETTERS, 2012, 12 (11) :5598-5602