Some notes on the spectral perturbations of the signless Laplacian of a graph

被引:1
|
作者
Yu Gui-dong [1 ]
Cai Gai-xiang [1 ]
Fan Yi-zheng [2 ]
机构
[1] Anqing Normal Univ, Sch Math & Computat Sci, Anqing 246011, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
基金
安徽省自然科学基金; 中国国家自然科学基金;
关键词
Graph; signless Laplacian matrix; spectral perturbation; RADIUS;
D O I
10.1007/s11766-014-3155-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph and let Q (G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q (G) under an edge addition or an edge contraction.
引用
收藏
页码:241 / 248
页数:8
相关论文
共 50 条
  • [41] CHROMATIC NUMBER AND SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Oboudi, Mohammad Reza
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (04) : 327 - 334
  • [42] ON THE HARMONIC INDEX AND THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS
    Deng, Hanyuan
    Vetrik, Tomas
    Balachandran, Selvaraj
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (02): : 299 - 307
  • [43] CHROMATIC BOUNDS OF A LINE GRAPH USING SIGNLESS LAPLACIAN VALUES
    Mittal, Kajal
    Kekre, Pranjali
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2025, 42 (01): : 55 - 68
  • [44] Maximizing signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity
    Ye, Miao-Lin
    Fan, Yi-Zheng
    Wang, Hai-Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (06) : 1180 - 1186
  • [45] On the sum of the first two largest signless Laplacian eigenvalues of a graph
    Zhou, Zi-Ming
    He, Chang-Xiang
    Shan, Hai-Ying
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [46] On the Difference between Laplacian and Signless Laplacian Coefficients of a Graph and its Applications on the Fullerene Graphs
    Arabzadeh, Mahsa
    Fath-Tabar, Gholam Hossein
    Rasouli, Hamid
    Tehranian, Abolfazl
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 15 (01): : 39 - 50
  • [47] TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, III
    Cvetkovic, Dragos
    Simic, Slobodan K.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2010, 4 (01) : 156 - 166
  • [48] THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF BOUNDED DEGREE GRAPHS ON SURFACES
    Yu, Guihai
    Feng, Lihua
    Ilic, Aleksandar
    Stevanovic, Dragan
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2015, 9 (02) : 332 - 346
  • [49] The signless Laplacian spectral radius of graphs with a prescribed number of edges
    Zhai, Mingqing
    Xue, Jie
    Lou, Zhenzhen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 603 (603) : 154 - 165
  • [50] THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF BICYCLIC GRAPHS WITH A GIVEN GIRTH
    Zhu, Zhongxun
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 378 - 388