Some notes on the spectral perturbations of the signless Laplacian of a graph

被引:1
|
作者
Yu Gui-dong [1 ]
Cai Gai-xiang [1 ]
Fan Yi-zheng [2 ]
机构
[1] Anqing Normal Univ, Sch Math & Computat Sci, Anqing 246011, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
基金
安徽省自然科学基金; 中国国家自然科学基金;
关键词
Graph; signless Laplacian matrix; spectral perturbation; RADIUS;
D O I
10.1007/s11766-014-3155-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph and let Q (G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q (G) under an edge addition or an edge contraction.
引用
收藏
页码:241 / 248
页数:8
相关论文
共 50 条
  • [1] Some notes on the spectral perturbations of the signless Laplacian of a graph
    Gui-dong Yu
    Gai-xiang Cai
    Yi-zheng Fan
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 241 - 248
  • [2] Some notes on the spectral perturbations of the signless Laplacian of a graph
    YU Gui-dong
    CAI Gai-xiang
    FAN Yi-zheng
    Applied Mathematics:A Journal of Chinese Universities, 2014, (02) : 241 - 248
  • [3] The signless Laplacian and distance signless Laplacian spectral radius of digraphs with some given parameters
    Xi, Weige
    Wang, Ligong
    DISCRETE APPLIED MATHEMATICS, 2017, 227 : 136 - 141
  • [4] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, S.
    Khan, Saleem
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04)
  • [5] Signless Laplacian spectrum of a graph
    Ghodrati, Amir Hossein
    Hosseinzadeh, Mohammad Ali
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 682 : 257 - 267
  • [6] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    S. Pirzada
    Saleem Khan
    Computational and Applied Mathematics, 2023, 42
  • [7] Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph
    Maden, A. Dilek
    Das, Kinkar Ch.
    Cevik, A. Sinan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5025 - 5032
  • [8] On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph
    Ji-Ming Guo
    Jianxi Li
    Wai Chee Shiu
    Czechoslovak Mathematical Journal, 2013, 63 : 701 - 720
  • [9] On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 701 - 720
  • [10] Distance signless Laplacian spectrum of a graph
    Jia, Huicai
    Shiu, Wai Chee
    FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (04) : 653 - 672