Fully Automatic Knee Joint Segmentation and Quantitative Analysis for Osteoarthritis from Magnetic Resonance (MR) Images Using a Deep Learning Model

被引:19
作者
Tang, Xiongfeng [1 ]
Guo, Deming [1 ]
Liu, Aie [2 ]
Wu, Dijia [2 ]
Liu, Jianhua [3 ]
Xu, Nannan [3 ]
Qin, Yanguo [1 ]
机构
[1] Jilin Univ, Hosp 2, Orthpoead Med Ctr, Changchun, Jilin, Peoples R China
[2] Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China
[3] Second Hosp Jilin Univ, Dept Radiol, Changchun, Jilin, Peoples R China
来源
MEDICAL SCIENCE MONITOR | 2022年 / 28卷
基金
中国国家自然科学基金;
关键词
Convolutional Neural Network; Deep Learning; Knee Joint; Osteoarthritis; Tissue Segmentation; PROGRESSION DATA; CLINICAL-TRIALS; REPLACEMENT; CARTILAGE; BIOMARKERS; DIAGNOSIS; TISSUE; SHAPE; AREA;
D O I
10.12659/MSM.936733
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: We aimed to develop and evaluate a deep learning-based method for fully automatic segmentation of knee joint MR imaging and quantitative computation of knee osteoarthritis (OA)-related imaging biomarkers. Material/Methods: This retrospective study included 843 volumes of proton density-weighted fat suppression MR imaging. A convolutional neural network segmentation method with multiclass gradient harmonized Dice loss was trained and evaluated on 500 and 137 volumes, respectively. To assess potential morphologic biomarkers for OA, the volumes and thickness of cartilage and meniscus, and minimal joint space width (mJSW) were automatically computed and compared between 128 OA and 162 control data. Results: The CNN segmentation model produced reasonably high Dice coefficients, ranging from 0.948 to 0.974 for knee bone compartments, 0.717 to 0.809 for cartilage, and 0.846 for both lateral and medial menisci. The OA related biomarkers computed from automatic knee segmentation achieved strong correlation with those from manual segmentation: average intraclass correlations of 0.916, 0.899, and 0.876 for volume and thickness of cartilage, meniscus, and mJSW, respectively. Volume and thickness measurements of cartilage and mJSW were strongly correlated with knee OA progression. Conclusions: We present a fully automatic CNN-based knee segmentation system for fast and accurate evaluation of knee joint images, and OA-related biomarkers such as cartilage thickness and mJSW were reliably computed and visualized in 3D. The results show that the CNN model can serve as an assistant tool for radiologists and orthopedic surgeons in clinical practice and basic research.
引用
收藏
页数:12
相关论文
共 34 条
[1]   DEEP LEARNING-BASED FEMORAL CARTILAGE AUTOMATIC SEGMENTATION IN ULTRASOUND IMAGING FOR GUIDANCE IN ROBOTIC KNEE ARTHROSCOPY [J].
Antico, M. ;
Sasazawa, F. ;
Dunnhofer, M. ;
Camps, S. M. ;
Jaiprakash, A. T. ;
Pandey, A. K. ;
Crawford, R. ;
Carneiro, G. ;
Fontanarosa, D. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (02) :422-435
[2]   The relationship between three-dimensional knee MRI bone shape and total knee replacement-a case control study: data from the Osteoarthritis Initiative [J].
Barr, Andrew J. ;
Dube, Bright ;
Hensor, Elizabeth M. A. ;
Kingsbury, Sarah R. ;
Peat, George ;
Bowes, Mike A. ;
Sharples, Linda D. ;
Conaghan, Philip G. .
RHEUMATOLOGY, 2016, 55 (09) :1585-1593
[3]   Osteoarthritis: an update with relevance for clinical practice [J].
Bijlsma, Johannes W. J. ;
Berenbaum, Francis ;
Lafeber, Foris P. J. G. .
LANCET, 2011, 377 (9783) :2115-2126
[4]   A novel method for bone area measurement provides new insights into osteoarthritis and its progression [J].
Bowes, Michael A. ;
Vincent, Graham R. ;
Wolstenholme, Christopher B. ;
Conaghan, Philip G. .
ANNALS OF THE RHEUMATIC DISEASES, 2015, 74 (03) :519-525
[5]   Human, All Too Human? An All-Around Appraisal of the "Artificial Intelligence Revolution" in Medical Imaging [J].
Coppola, Francesca ;
Faggioni, Lorenzo ;
Gabelloni, Michela ;
De Vietro, Fabrizio ;
Mendola, Vincenzo ;
Cattabriga, Arrigo ;
Cocozza, Maria Adriana ;
Vara, Giulio ;
Piccinino, Alberto ;
Lo Monaco, Silvia ;
Pastore, Luigi Vincenzo ;
Mottola, Margherita ;
Malavasi, Silvia ;
Bevilacqua, Alessandro ;
Neri, Emanuele ;
Golfieri, Rita .
FRONTIERS IN PSYCHOLOGY, 2021, 12
[6]   A review on segmentation of knee articular cartilage: from conventional methods towards deep learning [J].
Ebrahimkhani, Somayeh ;
Jaward, Mohamed Hisham ;
Cicuttini, Flavia M. ;
Dharmaratne, Anuja ;
Wang, Yuanyuan ;
de Herrera, Alba G. Seco .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 106
[7]   Cartilage Thickness Change as an Imaging Biomarker of Knee Osteoarthritis Progression: Data From the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium [J].
Eckstein, F. ;
Collins, J. E. ;
Nevitt, M. C. ;
Lynch, J. A. ;
Kraus, V. B. ;
Katz, J. N. ;
Losina, E. ;
Wirth, W. ;
Guermazi, A. ;
Roemer, F. W. ;
Hunter, D. J. .
ARTHRITIS & RHEUMATOLOGY, 2015, 67 (12) :3184-3189
[8]   Imaging of cartilage and bone: promises and pitfalls in clinical trials of osteoarthritis [J].
Eckstein, F. ;
Guermazi, A. ;
Gold, G. ;
Duryea, J. ;
Le Graverand, M. -P. Hellio ;
Wirth, W. ;
Miller, C. G. .
OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (10) :1516-1532
[9]   Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: A longitudinal case-control study from the Osteoarthritis Initiative [J].
Eckstein, Felix ;
Boudreau, Robert ;
Wang, Zhijie ;
Hannon, Michael J. ;
Duryea, Jeff ;
Wirth, Wolfgang ;
Cotofana, Sebastian ;
Guermazi, Ali ;
Roemer, Frank ;
Nevitt, Michael ;
John, Markus R. ;
Ladel, Christoph ;
Sharma, Leena ;
Hunter, David J. ;
Kwoh, C. Kent .
EUROPEAN RADIOLOGY, 2016, 26 (06) :1942-1951
[10]   Quantitative MRI measures of cartilage predict knee replacement: a case-control study from the Osteoarthritis Initiative [J].
Eckstein, Felix ;
Kwoh, C. Kent ;
Boudreau, Robert M. ;
Wang, Zhijie ;
Hannon, Michael J. ;
Cotofana, Sebastian ;
Hudelmaier, Martin I. ;
Wirth, Wolfgang ;
Guermazi, Ali ;
Nevitt, Michael C. ;
John, Markus R. ;
Hunter, David J. .
ANNALS OF THE RHEUMATIC DISEASES, 2013, 72 (05) :707-714