Atomic Decomposition of Hardy Spaces Associated with Certain Laguerre Expansions

被引:9
作者
Dziubanski, Jacek [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
Hardy spaces; Maximal functions; Laguerre expansions; HEAT-DIFFUSION; MAXIMAL OPERATORS; POISSON INTEGRALS;
D O I
10.1007/s00041-008-9020-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L-n(a)(x), n = 0, 1, ... , be the Laguerre polynomials of order a > -1. Denote l(n)(a)(x) = (n!/Gamma(n + a + 1))L-1/2(n)a(x)e(-x/2). Let T-t(x, y) = Sigma(n)e(-(n+(a+1)/2)t)l(n)(a)(x)l(n)(a)(y) be the kernel of the semigroup {T-t}(t>0) associated with the system l(n)(a) considered on ((0, infinity), x(a) dx). We say that a function f belongs to the Hardy space H-1 associated with the semigroup if the maximal function M f(x) = sup(t>0)vertical bar integral(infinity)(0) T-t(x, y) f(y)y(a) dy vertical bar belongs to L-1((0, infinity), x(a) dx). We prove a special atomic decomposition of the elements of the Hardy space.
引用
收藏
页码:129 / 152
页数:24
相关论文
共 15 条
[1]  
Coifman R., 1971, LECT NOTES MATH, V242
[2]   Hardy spaces for Laguerre expansions [J].
Dziubanski, J. .
CONSTRUCTIVE APPROXIMATION, 2008, 27 (03) :269-287
[3]  
Dziubanski J, 1997, STUD MATH, V126, P149
[4]  
Dziubanski J, 1999, REV MAT IBEROAM, V15, P279
[5]   LOCAL VERSION OF REAL HARDY SPACES [J].
GOLDBERG, D .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (01) :27-42
[6]   Heat-diffusion maximal operators for Laguerre semigroups with negative parameters [J].
Macías, R ;
Segovia, C ;
Torrea, JL .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 229 (02) :300-316
[7]   DECOMPOSITION INTO ATOMS OF DISTRIBUTIONS ON SPACES OF HOMOGENEOUS TYPE [J].
MACIAS, RA ;
SEGOVIA, C .
ADVANCES IN MATHEMATICS, 1979, 33 (03) :271-309
[8]   Heat-diffusion and Poisson integrals for Laguerre and special Hermite expansions on weighted Lp spaces [J].
Nowak, A .
STUDIA MATHEMATICA, 2003, 158 (03) :239-268
[9]  
Nowak A, 2007, INDIANA U MATH J, V56, P417
[10]  
Stein E., 1993, Harmonic Analysis: Real Variable Methods, Orthogonality and Socillatory Integrals