GLOBAL WELL-POSEDNESS OF THE 3D INCOMPRESSIBLE HALL-MHD EQUATIONS FOR SMALL INITIAL DATA IN CERTAIN BESOV SPACES

被引:2
作者
Ma, Caochuan [1 ]
机构
[1] Tianshui Normal Univ, Dept Math, Tianshui 741000, Gansu, Peoples R China
关键词
global well-posedness; Hall-MHD equations; large velocity; BLOW-UP CRITERIA; REGULARITY CRITERIA; MAGNETIC RECONNECTION; MAGNETOHYDRODYNAMICS; EXISTENCE; DECAY;
D O I
10.1216/rmj.2020.50.2127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove global well-posedness of solution to the 3D incompressible Hall-magnetohydrodynamics (Hall-MHD) equations, where the initial data is in critical Besov space. Since the initial vertical velocity may be large enough, our work improves some recent results in [28; 30].
引用
收藏
页码:2127 / 2139
页数:13
相关论文
共 35 条
[1]   KINETIC FOR MULATION AND GLOBAL EXISTENCE FOR THE HALL-MAGNETO-HYDRODYNAMICS SYSTEM [J].
Acheritogaray, Marion ;
Degond, Pierre ;
Frouvelle, Amic ;
Liu, Jian-Guo .
KINETIC AND RELATED MODELS, 2011, 4 (04) :901-918
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]   Singularity formation for the incompressible Hall-MHD equations without resistivity [J].
Chae, Dongho ;
Weng, Shangkun .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (04) :1009-1022
[4]   Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion [J].
Chae, Dongho ;
Wan, Renhui ;
Wu, Jiahong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (04) :627-638
[5]   Well-posedness for Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Degond, Pierre ;
Liu, Jian-Guo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :555-565
[6]   the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Lee, Jihoon .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) :3835-3858
[7]   On the temporal decay for the Hall-magnetohydrodynamic equations [J].
Chae, Dongho ;
Schonbek, Maria .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :3971-3982
[8]   Discontinuity of weak solutions to the 3D NSE and MHD equations in critical and supercritical spaces [J].
Cheskidov, Alexey ;
Dai, Mimi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (02)
[9]   Norm inflation for generalized magneto-hydrodynamic system [J].
Cheskidov, Alexey ;
Dai, Mimi .
NONLINEARITY, 2015, 28 (01) :129-142
[10]  
Dai M., 2018, ARXIV180309556