On the prescribed scalar curvature problem in RN, local uniqueness and periodicity

被引:103
作者
Deng, Yinbin [1 ]
Lin, Chang-Shou [2 ]
Yan, Shusen [3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Natl Taiwan Univ, Ctr Adv Study, Taida Inst Math Sci, Taipei 106, Taiwan
[3] Univ New England, Dept Math, Armidale, NSW 2351, Australia
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2015年 / 104卷 / 06期
关键词
Prescribed scalar curvature; Elliptic problem; Local uniqueness; Symmetry; DELTA-U; S-N; EQUATION; PERTURBATION;
D O I
10.1016/j.matpur.2015.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a local uniqueness result for bubbling solutions of the prescribed scalar curvature problem in R-N. Such a result implies that some bubbling solutions preserve the symmetry from the scalar curvature K(y). In particular, we prove in this paper that if K(y) is periodic in y(1) with period 1 and has a local maximum at 0, then a bubbling solution whose blow-up set is {(jL, 0, ..., 0) : j = 0, +/- 1, +/- 2, ...} must be periodic in y(1) provided the positive integer L is large enough. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1013 / 1044
页数:32
相关论文
共 23 条
[1]   Perturbation of Δu plus u(N+2)/(N-2)=0, the scalar curvature problem in RN, and related topics [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 165 (01) :117-149
[2]  
BAHRI A, 1995, CALC VAR PARTIAL DIF, V3, P67, DOI 10.1007/s005260050007
[3]   THE SCALAR-CURVATURE PROBLEM ON THE STANDARD 3-DIMENSIONAL SPHERE [J].
BAHRI, A ;
CORON, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) :106-172
[4]  
Bahri A., 1989, RES NOTES MATH SER, V82
[5]   On the scalar curvature equation -: Δu = (1+εΚ) u(N+2)/(N-2) in RN [J].
Cao, DM ;
Noussair, ES ;
Yan, SS .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 15 (03) :403-419
[6]   A PERTURBATION RESULT IN PRESCRIBING SCALAR CURVATURE ON SN [J].
CHANG, SYA ;
YANG, PC .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (01) :27-69
[7]   THE SCALAR CURVATURE EQUATION ON 2-SPHERE AND 3-SPHERE [J].
CHANG, SYA ;
GURSKY, MJ ;
YANG, PC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :205-229
[8]  
Chen CC, 1997, COMMUN PUR APPL MATH, V50, P971, DOI 10.1002/(SICI)1097-0312(199710)50:10<971::AID-CPA2>3.0.CO
[9]  
2-D
[10]  
Chen CC, 1998, J DIFFER GEOM, V49, P115