Asymptotic expansions of multiple zeta functions and power mean values of Hurwitz zeta functions

被引:6
作者
Egami, S [1 ]
Matsumoto, K
机构
[1] Toyama Univ, Fac Engn, Gofu Ku, Toyama 9308555, Japan
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2002年 / 66卷
关键词
D O I
10.1112/S0024610702003253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let zeta(s, alpha) be the Hurwitz zeta function with parameter alpha. Power mean values of the form Sigma(a=1)(q) zeta(s,a/q)(h) or Sigma(a=1)(q) \zeta(s,a/q)\(2h) are studied, where q and h are positive integers. These mean values can be written as a linear combinations of Sigma(a=1)(q) zeta(r)(s(1),.. s(r); a/q), where zeta(r)(s(1),... s(r); alpha) is a generalization of Euler-Zagier multiple zeta sums. The Mellin-Barnes integral formula is used to prove an asymptotic expansion of Sigma(a=1)(q) zeta(r)(s(1),.. s(r); a/q) with respect to q. Hence a general way of deducing asymptotic expansion formulas for Sigma(a=1)(q) zeta(s,a/q)(h) and Sigma(a=1)(q) \zeta(s,a/q)\(2h) is obtained. In particular, the asymptotic expansion of Sigma(a=1)(q) zeta(1/2,a/q)(3) with respect to q is written down.
引用
收藏
页码:41 / 60
页数:20
相关论文
共 20 条
[1]   Analytic continuation of multiple zeta-functions and their values at non-positive integers [J].
Akiyama, S ;
Egami, S ;
Tanigawa, Y .
ACTA ARITHMETICA, 2001, 98 (02) :107-116
[2]  
AKIYAMA S, IN PRESS ANAL NUMBER
[3]  
[Anonymous], 2000, TRENDS MATH
[4]  
[Anonymous], 1990, COURSE MORDERN ANAL
[5]   THE MEAN-VALUE OF THE RIEMANN ZETA-FUNCTION [J].
ATKINSON, FV .
ACTA MATHEMATICA, 1949, 81 (04) :353-376
[6]  
Berge C., 1971, Principles of Combinatorics
[7]  
EGAMI S, 2000, SURIKAISEKIKENKYUSHO, V1160, P1
[8]   AN ASYMPTOTIC SERIES FOR THE MEAN-VALUE OF DIRICHLET L-FUNCTIONS [J].
HEATHBROWN, DR .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (01) :148-161
[9]   THE MEAN-VALUES OF DIRICHLET L-FUNCTIONS AT INTEGER POINTS AND CLASS-NUMBERS OF CYCLOTOMIC FIELDS [J].
KATSURADA, M ;
MATSUMOTO, K .
NAGOYA MATHEMATICAL JOURNAL, 1994, 134 :151-172
[10]   DISCRETE MEAN-VALUES OF HURWITZ ZETA-FUNCTIONS [J].
KATSURADA, M ;
MATSUMOTO, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (06) :164-169