The uniqueness of Weierstrass points with semigroup ⟨a; b⟩ and related semigroups

被引:0
|
作者
Coppens, Marc [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elektrotechniek ESAT, Technol Campus Geel,Kleinhoefstr 4, B-2440 Geel, Belgium
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2019年 / 89卷 / 01期
关键词
Weierstrass points; Gonality; Weierstrass semigroup; C-a; (b)-curves; 1ST NON-GAPS; NODAL CURVES;
D O I
10.1007/s12188-019-00201-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume a and b = na + r with n >= 1 and 0 < r < a are relatively prime integers. In case C is a smooth curve and P is a point on C with Weierstrass semigroup equal to < a; b > then C is called a C-a;b-curve. In case r not equal a - 1 and b not equal a + 1 we prove C has no other point Q not equal P having Weierstrass semigroup equal to < a; b >, in which case we say that the Weierstrass semigroup < a; b > occurs at most once. The curve C-a;b has genus (a - 1)(b - 1)/2 and the result is generalized to genus g < (a - 1)(b - 1)/2. We obtain a lower bound on g (sharp in many cases) such that all Weierstrass semigroups of genus g containing < a; b > occur at most once.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Weierstrass points on Kummer extensions
    Abdon, Miriam
    Borges, Herivelto
    Quoos, Luciane
    ADVANCES IN GEOMETRY, 2019, 19 (03) : 323 - 333
  • [22] Weierstrass points of superelliptic curves
    Shor, C.
    Shaska, T.
    ADVANCES ON SUPERELLIPTIC CURVES AND THEIR APPLICATIONS, 2015, 41 : 15 - 46
  • [23] On nonnegatively graded Weierstrass points
    Contiero, Andre
    Fontes, Aislan Leal
    Stevens, Jan
    Vargas, Jhon Quispe
    ARKIV FOR MATEMATIK, 2024, 62 (02): : 387 - 412
  • [24] On Weierstrass Gaps at Several Points
    Tenorio, Wanderson
    Tizziotti, Guilherme
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (02): : 543 - 559
  • [25] On Weierstrass semigroups of double coverings of hyperelliptic curves
    Oliveira, Gilvan
    Pimentel, Francisco L. R.
    SEMIGROUP FORUM, 2015, 90 (03) : 721 - 730
  • [26] Weierstrass semigroups and automorphism group of a maximal curve with the third largest genus
    Beelen, Peter
    Montanucci, Maria
    Vicino, Lara
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 92
  • [27] Weierstrass semigroup and automorphism group of the curves χn,r
    Borges, H.
    Sepulveda, A.
    Tizziotti, G.
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 36 : 121 - 132
  • [28] On Weierstrass semigroups of double coverings of hyperelliptic curves
    Gilvan Oliveira
    Francisco L. R. Pimentel
    Semigroup Forum, 2015, 90 : 721 - 730
  • [29] Local complete intersections and Weierstrass points
    Contiero, Andre
    Mazzini, Sarah
    PORTUGALIAE MATHEMATICA, 2025, 82 (1-2) : 91 - 111
  • [30] THE WEIERSTRASS SEMIGROUPS ON DOUBLE COVERS OF GENUS TWO CURVES
    Harui, Takeshi
    Komeda, Jiryo
    Ohbuchi, Akira
    TSUKUBA JOURNAL OF MATHEMATICS, 2015, 38 (02) : 201 - 206