Reduced Switching Connectivity for Large Scale Antenna Selection

被引:32
作者
Garcia-Rodriguez, Adrian [1 ,2 ]
Masouros, Christos [3 ]
Rulikowski, Pawel [2 ]
机构
[1] UCL, London WC1E 7JE, England
[2] Nokia Bell Labs, Dublin 15, Ireland
[3] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会;
关键词
Antenna selection; massive MIMO; RF switching matrices; insertion losses; energy efficiency; MASSIVE MIMO; ENERGY EFFICIENCY; SYSTEMS; PERFORMANCE; CAPACITY;
D O I
10.1109/TCOMM.2017.2669030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we explore reduced-connectivity radio frequency (RF) switching networks for reducing the analog hardware complexity and switching power losses in antenna selection (AS) systems. In particular, we analyze different hardware architectures for implementing the RF switching matrices required in AS designs with a reduced number of RF chains. We explicitly show that fully-flexible switching matrices, which facilitate the selection of any possible subset of antennas and attain the maximum theoretical sum rates of AS, present numerous drawbacks such as the introduction of significant insertion losses, particularly pronounced in massive multiple-input multiple-output (MIMO) systems. Since these disadvantages make fully-flexible switching suboptimal in the energy efficiency sense, we further consider partially-connected switching networks as an alternative switching architecture with reduced hardware complexity, which we characterize in this work. In this context, we also analyze the impact of reduced switching connectivity on the analog hardware and digital signal processing of AS schemes that rely on received signal power information. Overall, the analytical and simulation results shown in this paper demonstrate that partially-connected switching maximizes the energy efficiency of massive MIMO systems for a reduced number of RF chains, while fully-flexible switching offers sub-optimal energy efficiency benefits due to its significant switching power losses.
引用
收藏
页码:2250 / 2263
页数:14
相关论文
共 49 条
[1]  
Ahmadi-Shokouh J., 2008, 2008 Canadian Conference on Electrical and Computer Engineering - CCECE, P000641, DOI 10.1109/CCECE.2008.4564614
[2]   Interference-Driven Antenna Selection for Massive Multiuser MIMO [J].
Amadori, Pierluigi Vito ;
Masouros, Christos .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (08) :5944-5958
[3]  
Analog Devices, DIG AN CONV AD9117
[4]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[5]  
[Anonymous], 2010, Fundamentals of LTE
[6]  
Benmimoune M., 2015, 2015 IEEE Global Communications Conference (GLOBECOM), P1
[7]   Massive MIMO: Ten Myths and One Critical Question [J].
Bjornson, Emil ;
Larsson, Erik G. ;
Marzetta, Thomas L. .
IEEE COMMUNICATIONS MAGAZINE, 2016, 54 (02) :114-123
[8]   Optimal Design of Energy-Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer? [J].
Bjornson, Emil ;
Sanguinetti, Luca ;
Hoydis, Jakob ;
Debbah, Merouane .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (06) :3059-3075
[9]   Five Disruptive Technology Directions for 5G [J].
Boccardi, Federico ;
Heath, Robert W., Jr. ;
Lozano, Angel ;
Marzetta, Thomas L. ;
Popovski, Petar .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) :74-80
[10]  
Breiter M., 1967, ARL670166 DTIC OH