Mechanisms of T2* anisotropy and gradient echo myelin water imaging

被引:32
作者
Lee, Jongho [1 ]
Nam, Yoonho [3 ]
Choi, Joon Yul [1 ]
Kim, Eung Yeop [4 ]
Oh, Se-Hong [5 ]
Kim, Dong-Hyun [2 ]
机构
[1] Seoul Natl Univ, Lab Imaging Sci & Technol, Dept Elect & Comp Engn, Seoul, South Korea
[2] Yonsei Univ, Dept Elect & Elect Engn, Seoul, South Korea
[3] Catholic Univ Korea, Coll Med, Seoul St Marys Hosp, Dept Radiol, Seoul, South Korea
[4] Gachon Univ Gil Med Ctr, Dept Radiol, Incheon, South Korea
[5] Cleveland Clin, Imaging Inst, Cleveland, OH 44106 USA
基金
新加坡国家研究基金会;
关键词
T-2(*) anisotropy; myelin water imaging; magnetic susceptibility; susceptibility anisotropy; gradient echo; HIGH-FIELD MRI; WHITE-MATTER CONTRAST; IN-VIVO HISTOLOGY; HUMAN BRAIN; ORIENTATION-DEPENDENCE; MULTIPLE-SCLEROSIS; FIBER ORIENTATION; BIOPHYSICAL MECHANISMS; FREQUENCY-SHIFTS; MAGNETIC-FIELD;
D O I
10.1002/nbm.3513
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In MRI, structurally aligned molecular or micro-organization (e.g. axonal fibers) can be a source of substantial signal variations that depend on the structural orientation and the applied magnetic field. This signal anisotropy gives us a unique opportunity to explore information that exists at a resolution several orders of magnitude smaller than that of typical MRI. In this review, one of the signal anisotropies, T-2(*) anisotropy in white matter, and a related imaging method, gradient echo myelin water imaging (GRE-MWI), are explored. The T-2(*) anisotropy has been attributed to isotropic and anisotropic magnetic susceptibility of myelin and compartmentalized microstructure of white matter fibers (i.e. axonal, myelin, and extracellular space). The susceptibility and microstructure create magnetic frequency shifts that change with the relative orientation of the fiber and the main magnetic field, generating the T-2(*) anisotropy. The resulting multi-component magnitude decay and nonlinear phase evolution have been utilized for GREMWI, assisting in resolving the signal fraction of the multiple compartments in white matter. The GRE-MWI method has been further improved by signal compensation techniques including physiological noise compensation schemes. The T-2(*) anisotropy and GRE-MWI provide microstructural information on a voxel (e.g. fiber orientation and tissue composition), and may serve as sensitive biomarkers for microstructural changes in the brain. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页数:13
相关论文
共 106 条
[1]  
[Anonymous], P INT SOC MAGN RESON
[2]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[3]   Biology of oligodendrocyte and myelin in the mammalian central nervous system [J].
Baumann, N ;
Pham-Dinh, D .
PHYSIOLOGICAL REVIEWS, 2001, 81 (02) :871-927
[4]   The in vivo influence of white matter fiber orientation towards B0 on T2*in the human brain [J].
Bender, B. ;
Klose, U. .
NMR IN BIOMEDICINE, 2010, 23 (09) :1071-1076
[5]   Diffusion MRI of Structural Brain Plasticity Induced by a Learning and Memory Task [J].
Blumenfeld-Katzir, Tamar ;
Pasternak, Ofer ;
Dagan, Michael ;
Assaf, Yaniv .
PLOS ONE, 2011, 6 (06)
[6]   MAGNETIC-ANISOTROPY OF EGG LECITHIN MEMBRANES [J].
BOROSKE, E ;
HELFRICH, W .
BIOPHYSICAL JOURNAL, 1978, 24 (03) :863-868
[7]  
Chappell KE, 2004, AM J NEURORADIOL, V25, P431
[8]   Detecting microstructural properties of white matter based on compartmentalization of magnetic susceptibility [J].
Chen, Way Cherng ;
Foxley, Sean ;
Miller, Karla L. .
NEUROIMAGE, 2013, 70 :1-9
[9]   Characterization of White Matter Fiber Bundles With T2☆ Relaxometry and Diffusion Tensor Imaging [J].
Cherubini, Andrea ;
Peran, Patrice ;
Hagberg, Gisela Elisabeth ;
Varsi, Ambra Erika ;
Luccichenti, Giacomo ;
Caltagirone, Carlo ;
Sabatini, Umberto ;
Spalletta, Gianfranco .
MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (05) :1066-1072
[10]   T2* mapping and Bo orientation-dependence at 7 T reveal cyto- and myeloarchitecture organization of the human cortex [J].
Cohen-Adad, J. ;
Polimeni, J. R. ;
Helmer, K. G. ;
Benner, T. ;
McNab, J. A. ;
Wald, L. L. ;
Rosen, B. R. ;
Mainero, C. .
NEUROIMAGE, 2012, 60 (02) :1006-1014