From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency

被引:30
作者
Kim, Jinseop S. [1 ,2 ]
Kaiser, Marcus [2 ,3 ,4 ]
机构
[1] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[2] Seoul Natl Univ, Dept Brain & Cognit Sci, Seoul, South Korea
[3] Newcastle Univ, Sch Comp Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
connectome; network analysis; modularity; efficiency; brain development; brain evolution; NERVOUS-SYSTEM; TIME WINDOWS; BRAIN; NETWORKS; CONNECTIVITY; EVOLUTION; DYNAMICS; COST;
D O I
10.1098/rstb.2013.0529
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The connectome, or the entire connectivity of a neural system represented by a network, ranges across various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly show has been extensively studied, it is unclear whether the connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of Caenorhabditis elegans and the fibre tract network of human brains obtained through diffusion spectrum imaging. We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of both C. elegans and human connectomes are higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution, and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in the C. elegans connectome or each region of interest in the human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared with the alternative arrangements. This implies that fewer genes are needed to encode for the organization of neural systems. While the first two findings show that the neural topologies are efficient in information processing, this suggests that they are also efficient from a developmental point of view. Together, these results show that neural systems are organized in such a way as to yield efficient features beyond those given by their modularity alone.
引用
收藏
页数:9
相关论文
共 55 条
[1]  
[Anonymous], 1992, AY's Neuroanatomy of C. elegans for Computation
[2]   The evolution of nervous system centralization [J].
Arendt, Detlev ;
Denes, Alexandru S. ;
Jekely, Gaspar ;
Tessmar-Raible, Kristin .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1496) :1523-1528
[3]   Functional Modularity of Background Activities in Normal and Epileptic Brain Networks [J].
Chavez, M. ;
Valencia, M. ;
Navarro, V. ;
Latora, V. ;
Martinerie, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (11)
[4]   Trade-off between Multiple Constraints Enables Simultaneous Formation of Modules and Hubs in Neural Systems [J].
Chen, Yuhan ;
Wang, Shengjun ;
Hilgetag, Claus C. ;
Zhou, Changsong .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (03)
[5]  
CHERNIAK C, 1994, J NEUROSCI, V14, P2418
[6]   Maps in the brain: What can we learn from them? [J].
Chklovskii, DB ;
Koulakov, AA .
ANNUAL REVIEW OF NEUROSCIENCE, 2004, 27 :369-392
[7]   Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection [J].
Courchesne, E ;
Pierce, K .
CURRENT OPINION IN NEUROBIOLOGY, 2005, 15 (02) :225-230
[8]   From the Connectome to the Synaptome: An Epic Love Story [J].
DeFelipe, Javier .
SCIENCE, 2010, 330 (6008) :1198-1201
[9]   Genetic Influences on Cost-Efficient Organization of Human Cortical Functional Networks [J].
Fornito, Alex ;
Zalesky, Andrew ;
Bassett, Danielle S. ;
Meunier, David ;
Ellison-Wright, Ian ;
Yuecel, Murat ;
Wood, Stephen J. ;
Shaw, Karen ;
O'Connor, Jennifer ;
Nertney, Deborah ;
Mowry, Bryan J. ;
Pantelis, Christos ;
Bullmore, Edward T. .
JOURNAL OF NEUROSCIENCE, 2011, 31 (09) :3261-3270
[10]   Cartography of complex networks:: modules and universal roles -: art. no. P02001 [J].
Guimerà, R ;
Amaral, LAN .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :1-13