Some Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function

被引:3
作者
Hwang, Kyung-Won [1 ]
Ryoo, Cheon Seoung [2 ]
机构
[1] Dong A Univ, Dept Math, Busan 604714, South Korea
[2] Hannam Univ, Dept Math, Daejeon 34430, South Korea
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 05期
关键词
Euler numbers and polynomials; q-Euler numbers and polynomials; Hurwitz-Euler eta function; multiple Hurwitz-Euler eta function; higher order q-Euler numbers and polynomials; (p; q)-Euler numbers and polynomials of higher order; symmetric identities; symmetry of the zero; POLYNOMIALS; BERNOULLI; EULER;
D O I
10.3390/sym11050645
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main purpose of this paper is to find some interesting symmetric identities for the (p,q)-Hurwitz-Euler eta function in a complex field. Firstly, we define the multiple (p,q)-Hurwitz-Euler eta function by generalizing the Carlitz's form (p,q)-Euler numbers and polynomials. We find some formulas and properties involved in Carlitz's form (p,q)-Euler numbers and polynomials with higher order. We find new symmetric identities for multiple (p,q)-Hurwitz-Euler eta functions. We also obtain symmetric identities for Carlitz's form (p,q)-Euler numbers and polynomials with higher order by using symmetry about multiple (p,q)-Hurwitz-Euler eta functions. Finally, we study the distribution and symmetric properties of the zero of Carlitz's form (p,q)-Euler numbers and polynomials with higher order.
引用
收藏
页数:14
相关论文
共 20 条
[1]  
Agarwal R.P., 2018, J COMPUT ANAL APPL, V24, P1439
[2]  
Andrews G.E., 1999, Encycl. Math. Appl., V71
[3]  
Araci S, 2016, J INEQUAL APPL, DOI 10.1186/s13660-016-1240-8
[4]   EXPANSIONS OF Q-BERNOULLI NUMBERS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (02) :355-364
[5]   THE MULTIPLE HURWITZ ZETA FUNCTION AND THE MULTIPLE HURWITZ-EULER ETA FUNCTION [J].
Choi, Junesang ;
Srivastava, H. M. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (02) :501-522
[6]   Carlitz's q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions [J].
Choi, Junesang ;
Anderson, P. J. ;
Srivastava, H. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) :1185-1208
[7]   A coherent approach to non-integer order derivatives [J].
Duarte Ortigueira, Manuel .
SIGNAL PROCESSING, 2006, 86 (10) :2505-2515
[8]  
Duran U., 2016, J. Comput. Theor. Nanosci, V13, P7833, DOI [10.1166/jctn.2016.5785, DOI 10.1166/JCTN.2016.5785]
[9]  
Guariglia E, 2015, FRACTIONAL DYNAMICS, P357
[10]   A FUNCTIONAL EQUATION FOR THE RIEMANN ZETA FRACTIONAL DERIVATIVE [J].
Guariglia, Emanuel ;
Silvestrov, Sergei .
ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798