A relaxed estimate of the degree of approximation by Fourier series in generalized Holder metric

被引:26
作者
Leindler, L. [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
L-P-NORM; TRIGONOMETRIC APPROXIMATION;
D O I
10.1007/s10476-009-0104-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to give a relaxed estimate pertaining to the degree of approximation of the partial sums of Fourier series in a new Banach space of functions introduced by Das, Nath and Ray [2]. Furthermore, applying our new result, we verify, under certain natural conditions, that some classical means have the same approximation degree as the partial sums.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 7 条
[1]  
[Anonymous], 1910, B SOC MATH FR, DOI DOI 10.24033/BSMF.859
[2]   Trigonometric approximation of functions in Lp-norm [J].
Chandra, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :13-26
[3]  
Das, 1999, ANAL APPL, P43
[4]   Trigonometric approximation in Lp-norm [J].
Leindler, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (01) :129-136
[5]  
Leindler L., 1979, Studia Sci .Math. Hungarica, V14, P431
[6]   CONVERGENCE OF FOURIER-SERIES OF HOLDER CONTINUOUS-FUNCTIONS [J].
PROSSDORF, S .
MATHEMATISCHE NACHRICHTEN, 1975, 69 :7-14
[7]  
Quade E.S., 1937, Duke Math. J, V3, P529, DOI [DOI 10.1215/S0012-7094-37-00342-9, 10.1215/S0012-7094-37-00342-9]