Independent Low-Rank Matrix Analysis Based on Time-Variant Sub-Gaussian Source Model

被引:0
作者
Mogami, Shinichi [1 ]
Takamune, Norihiro [1 ]
Kitamura, Daichi [2 ]
Saruwatari, Hiroshi [1 ]
Takahashi, Yu [3 ]
Kondo, Kazunobu [3 ]
Nakajima, Hiroaki [3 ]
Ono, Nobutaka [4 ]
机构
[1] Univ Tokyo, Tokyo, Japan
[2] Kagawa Coll, Natl Inst Technol, Kagawa, Japan
[3] Yamaha Corp, Shizuoka, Japan
[4] Tokyo Metropolitan Univ, Tokyo, Japan
来源
2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC) | 2018年
关键词
PERMUTATION PROBLEM; SEPARATION; FACTORIZATION; MIXTURES; ICA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Independent low-rank matrix analysis (ILRMA) is a fast and stable method for blind audio source separation. Conventional ILRMAs assume time-variant (super-)Gaussian source models, which can only represent signals that follow a super-Gaussian distribution. In this paper, we focus on ILRMA based on a generalized Gaussian distribution (GGD-ILRMA) and propose a new type of GGD-ILRMA that adopts a time-variant sub-Gaussian distribution for the source model. By using a new update scheme called generalized iterative projection for homogeneous source models, we obtain a convergence-guaranteed update rule for demixing spatial parameters. In the experimental evaluation, we show the versatility of the proposed method, i.e., the proposed time-variant sub-Gaussian source model can be applied to various types of source signal.
引用
收藏
页码:1684 / 1691
页数:8
相关论文
共 23 条
[1]  
[Anonymous], EURASIP J ADV SIGN P
[2]  
Araki Shoko, 2012, Latent Variable Analysis and Signal Separation. Proceedings 10th International Conference, LVA/ICA 2012, P414, DOI 10.1007/978-3-642-28551-6_51
[3]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[4]  
Hiroe A, 2006, LECT NOTES COMPUT SC, V3889, P601
[5]  
Hunter DR, 2000, J COMPUT GRAPH STAT, V9, P60
[6]  
Ikeshita R, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P741, DOI 10.1109/ICASSP.2018.8461387
[7]   Blind source separation exploiting higher-order frequency dependencies [J].
Kim, Taesu ;
Attias, Hagai T. ;
Lee, Soo-Young ;
Lee, Te-Won .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2007, 15 (01) :70-79
[8]  
Kitamura D, 2018, SIGNALS COMMUN TECHN, P125, DOI 10.1007/978-3-319-73031-8_6
[9]   Determined Blind Source Separation Unifying Independent Vector Analysis and Nonnegative Matrix Factorization [J].
Kitamura, Daichi ;
Ono, Nobutaka ;
Sawada, Hiroshi ;
Kameoka, Hirokazu ;
Saruwatari, Hiroshi .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2016, 24 (09) :1626-1641
[10]   Multichannel Signal Separation Combining Directional Clustering and Nonnegative Matrix Factorization with Spectrogram Restoration [J].
Kitamura, Daichi ;
Saruwatari, Hiroshi ;
Kameoka, Hirokazu ;
Takahashi, Yu ;
Kondo, Kazunobu ;
Nakamura, Satoshi .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2015, 23 (04) :654-669