Potentials of AI in medical image analysis in Gastroenterology and Hepatology

被引:29
作者
Chen, Hao [1 ]
Sung, Joseph J. Y. [2 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Med & Therapeut, Shatin, Hong Kong, Peoples R China
关键词
artificial intelligence (AI); deep learning (DL); endoscopy; gastroenterology; hepatology; machine learning (ML); pathology; radiology; POLYPS;
D O I
10.1111/jgh.15327
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
With the advancement of artificial intelligence (AI) technology, it comes in a big wave carrying possibly huge impact in the field of medicine. Gastroenterology and hepatology, being a specialty relying much on diagnostic imaging, endoscopy, and histopathology, AI technology has promised improving the quality and consistency of care to the patients. In this review, we will elucidate the development of machine learning methods, especially the visual representation mechanism in deep learning on recognition tasks. Various AI-image analysis applications in endoscopy, radiology, and pathology are covered in gastroenterology and hepatology and reveal the enormous potentials for AI in assisting diagnosis, prognosis, and treatment. We also discuss the promises as well as pitfalls for AI in medical image analysis and pointing out future research directions.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 42 条
[1]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[2]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[3]  
Bilic P., 2019, The Liver Tumor Segmentation Benchmark (LiTS)
[4]  
Blaha O., 2020, DEEP LEARNING BASED
[5]   Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model [J].
Byrne, Michael F. ;
Chapados, Nicolas ;
Soudan, Florian ;
Oertel, Clemens ;
Linares Perez, Milagros ;
Kelly, Raymond ;
Iqbal, Nadeem ;
Chandelier, Florent ;
Rex, Douglas K. .
GUT, 2019, 68 (01) :94-100
[6]  
Calderaro J., 2020, NAT CANCER, P1, DOI 10.1038/s43018-020-0087
[7]   Automatic Fetal Ultrasound Standard Plane Detection Using Knowledge Transferred Recurrent Neural Networks [J].
Chen, Hao ;
Dou, Qi ;
Ni, Dong ;
Cheng, Jie-Zhi ;
Qin, Jing ;
Li, Shengli ;
Heng, Pheng-Ann .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 :507-514
[8]   Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis [J].
Chen, Peng-Jen ;
Lin, Meng-Chiung ;
Lai, Mei-Ju ;
Lin, Jung-Chun ;
Lu, Henry Horng-Shing ;
Tseng, Vincent S. .
GASTROENTEROLOGY, 2018, 154 (03) :568-575
[9]   Self-Driving Cars [J].
Daily, Mike ;
Medasani, Swarup ;
Behringer, Reinhold ;
Trivedi, Mohan .
COMPUTER, 2017, 50 (12) :18-23
[10]   Adversarial attacks on medical machine learning [J].
Finlayson, Samuel G. ;
Bowers, John D. ;
Ito, Joichi ;
Zittrain, Jonathan L. ;
Beam, Andrew L. ;
Kohane, Isaac S. .
SCIENCE, 2019, 363 (6433) :1287-1289