Sparsity Based Approaches for Distribution Grid State Estimation-A Comparative Study

被引:29
作者
Dahale, Shweta [1 ]
Karimi, Hazhar Sufi [1 ]
Lai, Kexing [1 ]
Natarajan, Balasubramaniam [1 ]
机构
[1] Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA
关键词
Bad data; compressive sensing; matrix completion; power distribution; state estimation; IDENTIFICATION; COMPLETION;
D O I
10.1109/ACCESS.2020.3035378
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The power distribution grid is typically unobservable due to a lack of measurements. While deploying more sensors can alleviate this issue, it also presents new challenges related to data aggregation and the underlying communication infrastructure. Therefore, developing state estimation methods that enhance situational awareness at the grid edge with compressed measurements is critical. For this purpose, a suite of sparsity-based approaches that exploit the correlation among states/measurements in spatial as well as temporal domains have been proposed recently. This article presents a systematic comparison and evaluation of these approaches. Specifically, the performance and complexity of spatial methods (1-D compressive sensing and matrix completion) and spatio-temporal methods (2-D compressive sensing and tensor completion) are compared using the IEEE 37 and IEEE 123 bus test systems. Additionally, new robust formulations of these sparsity-based methods are derived and shown to be robust to bad data and network parameter uncertainties. Among the sparsity-based approaches, compressive sensing methods tend to outperform matrix completion and tensor completion methods in terms of error performance.
引用
收藏
页码:198317 / 198327
页数:11
相关论文
共 44 条
[31]  
Liu B., 2019, ARXIV190202009
[32]   Tensor Completion for Estimating Missing Values in Visual Data [J].
Liu, Ji ;
Musialski, Przemyslaw ;
Wonka, Peter ;
Ye, Jieping .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) :208-220
[33]   PARAMETER ERROR IDENTIFICATION AND ESTIMATION IN POWER-SYSTEM STATE ESTIMATION [J].
LIU, WHE ;
LIM, SL .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (01) :200-209
[34]   ESTIMATION OF PARAMETER ERRORS FROM MEASUREMENT RESIDUALS IN STATE ESTIMATION [J].
LIU, WHE ;
VANCUTSEM, T ;
DEBS, AS ;
WU, FF ;
LUN, SM .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (01) :81-89
[35]  
Madbhavi R., 2020, 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), P1
[36]   Distribution System State Estimation Using an Artificial Neural Network Approach for Pseudo Measurement Modeling [J].
Manitsas, Efthymios ;
Singh, Ravindra ;
Pal, Bikash C. ;
Strbac, Goran .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (04) :1888-1896
[37]   Electric power system state estimation [J].
Monticelli, A .
PROCEEDINGS OF THE IEEE, 2000, 88 (02) :262-282
[38]   Cognitive Risk Control for Mitigating Cyber-Attack in Smart Grid [J].
Oozeer, Mohammad Irshaad ;
Haykin, Simon .
IEEE ACCESS, 2019, 7 :125806-125826
[39]   Analytic Considerations and Design Basis for the IEEE Distribution Test Feeders [J].
Schneider, K. P. ;
Mather, B. A. ;
Pal, B. C. ;
Ten, C. -W. ;
Shirek, G. J. ;
Zhu, H. ;
Fuller, J. C. ;
Pereira, J. L. R. ;
Ochoa, L. F. ;
de Araujo, L. R. ;
Dugan, R. C. ;
Matthias, S. ;
Paudyal, S. ;
McDermott, T. E. ;
Kersting, W. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (03) :3181-3188
[40]   A Robust State Estimator for Medium Voltage Distribution Networks [J].
Wu, Jianzhong ;
He, Yan ;
Jenkins, Nick .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (02) :1008-1016