Using local 3D structure for segmentation of bone from computer tomography images

被引:17
作者
Westin, CF
Bhalerao, A
Knutsson, H
Kikinis, R
机构
来源
1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 1997年
关键词
D O I
10.1109/CVPR.1997.609418
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we focus on using local 3D structure for segmentation. A tensor descriptor is estimated for each neighbourhood, i.e. for each voxel in the data set. The tensors are created from a combination of the outputs form a set of 3D quadrature filters. The shape of the tensors describe locally the structure of the neighbourhood in terms of how much it is like a plane, a line, and a sphere. We apply this to segmentation of bone from Computer Tomography data (CT). Traditional methods are based purely on gray-level value discrimination and have difficulties in recovering thin bone structures due to so called partial voluming, a problem which is present in all such sampled data. We illuminate the partial voluming problem by showing that thresholding creates complicated artifacts even if the signal is densely enough sampled and can be perfectly reconstructed. The unwanted effects of thresholding can be reduced by a change of the signal basis. We show that by using additional local structure information can significantly reduce the degree of sampling artifacts. Evaluation of the method on a clinical case is presented, the segmentation of a human skull from a CT volume. The method shows that many of the thin bone structures which disappear in a pure thresholding can be recovered.
引用
收藏
页码:794 / 800
页数:7
相关论文
empty
未找到相关数据