Nonlinear System Control Using Adaptive Neural Fuzzy Networks Based on a Modified Differential Evolution

被引:76
|
作者
Chen, Cheng-Hung [1 ]
Lin, Cheng-Jian [2 ]
Lin, Chin-Teng [1 ,3 ,4 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect & Control Engn, Hsinchu 300, Taiwan
[2] Natl Chin Yi Univ Technol, Dept Comp Sci & Informat Engn, Taiping City 411, Taiwan
[3] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu 300, Taiwan
[4] Univ Syst Taiwan, Brain Res Ctr, Hsinchu 300, Taiwan
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS | 2009年 / 39卷 / 04期
关键词
Differential evolution (DE); magnetic levitation system; neural fuzzy networks; planetary-train-type inverted pendulum; OUTPUT-FEEDBACK CONTROL; IDENTIFICATION; DESIGN; PARAMETERIZATION;
D O I
10.1109/TSMCC.2009.2016572
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study presents an adaptive neural fuzzy network (ANFN) controller based on a modified differential evolution (MODE) for solving control problems. The proposed ANFN controller adopts a functional link neural network as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN controller is a nonlinear combination of input variables. The proposed MODE learning algorithm adopts an evolutionary learning method to optimize the controller parameters. For design optimization, a new criterion is introduced. A hardware-in-the loop control technique is developed and applied to the designed ANFN controller using the MODE learning algorithm. The proposed ANFN controller with the MODE learning algorithm (ANFN-MODE) is used in two practical applications-the planetary-train-type inverted pendulum system and the magnetic levitation system. The experiment is developed in a real-time visual simulation environment. Experimental results of this study have demonstrated the robustness and effectiveness of the proposed ANFN-MODE controller.
引用
收藏
页码:459 / 473
页数:15
相关论文
共 50 条