Deep Learning-based Real-time Switching of Reconfigurable Microgrids

被引:7
作者
Dabbaghjamanesh, Morteza [1 ]
Zhang, Jie [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75080 USA
来源
2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT) | 2020年
关键词
Deep learning; gated recurrent unit; microgrid; reconfiguration; ENERGY MANAGEMENT-SYSTEM;
D O I
10.1109/isgt45199.2020.9087729
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new approach for finding the optimal switchings of reconfigurable microgrids (MGs) based on a deep learning technique. As the load and power generation of units vary with time, the network reconfiguration depends on both the current and previous status of load demand and generation units. To this end, the gated recurrent unit (GRU) algorithm, a time series model, is employed to solve the network reconfiguration. The GRU architecture is designed to learn the network topology characteristics, e.g., power injection and line impedance. Finally, the proposed technique is examined with the IEEE 33 microgrid test system. Results show that the deep learning-based technique is able to make accurate reconfiguration decisions in real time.
引用
收藏
页数:5
相关论文
共 17 条
[1]  
Chung J., 2014, CoRR, vol. abs/1412. 3555
[2]  
Dabbaghjamanesh M., 2019, STOCHASTIC ENERGY MA
[3]   Sensitivity Analysis of Renewable Energy Integration on Stochastic Energy Management of Automated Reconfigurable Hybrid AC-DC Microgrid Considering DLR Security Constraint [J].
Dabbaghjamanesh, Morteza ;
Kavousi-Fard, Abdollah ;
Mehraeen, Shahab ;
Zhang, Jie ;
Dong, Zhao Yang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) :120-131
[4]  
Dabbaghjamanesh M, 2018, IEEE POW ENER SOC GE
[5]   Effective Scheduling of Reconfigurable Microgrids With Dynamic Thermal Line Rating [J].
Dabbaghjamanesh, Morteza ;
Kavousi-Fard, Abdollah ;
Mehraeen, Shahab .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (02) :1552-1564
[6]   Reinforced Deterministic and Probabilistic Load Forecasting via Q-Learning Dynamic Model Selection [J].
Feng, Cong ;
Sun, Mucun ;
Zhang, Jie .
IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) :1377-1386
[7]   Unsupervised Clustering-Based Short-Term Solar Forecasting [J].
Feng, Cong ;
Cui, Mingjian ;
Hodge, Bri-Mathias ;
Lu, Siyuan ;
Hamann, Hendrik F. ;
Zhang, Jie .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10 (04) :2174-2185
[8]   A data-driven multi-model methodology with deep feature selection for short-term wind forecasting [J].
Feng, Cong ;
Cui, Mingjian ;
Hodge, Bri-Mathias ;
Zhang, Jie .
APPLIED ENERGY, 2017, 190 :1245-1257
[9]  
Ferdowsi Farzad, 2019, IEEE GREEN TECHNOL, P1
[10]   A Two-Layer Energy Management System for Microgrids With Hybrid Energy Storage Considering Degradation Costs [J].
Ju, Chengquan ;
Wang, Peng ;
Goel, Lalit ;
Xu, Yan .
IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (06) :6047-6057