Heralded Multiplexed High-Efficiency Cascaded Source of Dual-Rail Entangled Photon Pairs Using Spontaneous Parametric Down-Conversion

被引:11
作者
Dhara, Prajit [1 ,2 ]
Johnson, Spencer J. [3 ,4 ]
Gagatsos, Christos N. [1 ,2 ]
Kwiat, Paul G. [3 ,4 ]
Guha, Saikat [1 ,2 ]
机构
[1] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, NSF ERC Ctr Quantum Networks, Tucson, AZ 85721 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Illinois, Illinois Quantum Informat Sci & Technol Ctr, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
GENERATION; SCHEME;
D O I
10.1103/PhysRevApplied.17.034071
中图分类号
O59 [应用物理学];
学科分类号
摘要
Deterministic sources of high-fidelity entangled qubit pairs encoded in the dual-rail photonic basis, i.e., presence of a single photon in one of two orthogonal modes, are a key enabling technology of many applications of quantum information processing, including high-rate, high-fidelity quantum communications over long distances. The most popular and mature sources of such photonic entanglement, e.g., those that leverage spontaneous parametric down-conversion (SPDC) or spontaneous four-wave mixing, generate an entangled (so-called continuous-variable) quantum state that contains contributions from high-order photon terms that lie outside the span of the dual-rail basis, which is detrimental to most applications. One often uses low pump power to mitigate the effects of those high-order terms. However, that reduces the pair generation rate, and the source becomes inherently probabilistic. We investigate a cascaded source that performs a linear-optical entanglement swap between two SPDC sources, to generate a heralded photonic entangled state that has a higher fidelity (to the ideal Bell state) compared to a free-running SPDC source. Furthermore, with the Bell swap providing a heralding trigger, we show how to build a multiplexed source, which despite reasonable switching losses and detector loss and noise, yields a fidelity versus success probability trade-off of a high-efficiency source of high-fidelity dual-rail photonic entanglement. We find, however, that there is a threshold of 1.5 dB of loss per switch, beyond which multiplexing hurts the fidelity versus success probability trade-off.
引用
收藏
页数:24
相关论文
共 54 条
[1]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[2]   Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview [J].
Arakawa, Yasuhiko ;
Holmes, Mark J. .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[3]   INTERACTIONS BETWEEN LIGHT WAVES IN A NONLINEAR DIELECTRIC [J].
ARMSTRONG, JA ;
BLOEMBERGEN, N ;
DUCUING, J ;
PERSHAN, PS .
PHYSICAL REVIEW, 1962, 127 (06) :1918-+
[4]   Enhancing the performance of superconducting nanowire-based detectors with high-filling factor by using variable thickness [J].
Baghdadi, Reza ;
Schmidt, Ekkehart ;
Jahani, Saman ;
Charaev, Ilya ;
Mueller, Michael G. W. ;
Colangelo, Marco ;
Zhu, Di ;
Ilin, Konstantin ;
Semenov, Alexej D. ;
Jacob, Zubin ;
Siegel, Michael ;
Berggren, Karl K. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2021, 34 (03)
[5]  
Bartolucci S., 2021, ARXIV210109310QUANTP
[6]   Experimental demonstration of memory-enhanced quantum communication [J].
Bhaskar, M. K. ;
Riedinger, R. ;
Machielse, B. ;
Levonian, D. S. ;
Nguyen, C. T. ;
Knall, E. N. ;
Park, H. ;
Englund, D. ;
Loncar, M. ;
Sukachev, D. D. ;
Lukin, M. D. .
NATURE, 2020, 580 (7801) :60-+
[7]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[8]   Photon Temporal Modes: A Complete Framework for Quantum Information Science [J].
Brecht, B. ;
Reddy, Dileep V. ;
Silberhorn, C. ;
Raymer, M. G. .
PHYSICAL REVIEW X, 2015, 5 (04)
[9]   Multi-photon detection using a conventional superconducting nanowire single-photon detector [J].
Cahall, Clinton ;
Nicolich, Kathryn L. ;
Islam, Nurul T. ;
Lafyatis, Gregory P. ;
Miller, Aaron J. ;
Gauthier, Daniel J. ;
Kim, Jungsang .
OPTICA, 2017, 4 (12) :1534-1535
[10]   A polarization encoded photon-to-spin interface [J].
Chen, K. C. ;
Bersin, E. ;
Englund, D. .
NPJ QUANTUM INFORMATION, 2021, 7 (01)