Ordinary reduction of K3 surfaces

被引:15
作者
Bogomolov, Fedor A. [1 ]
Zarhin, Yuri G. [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2009年 / 7卷 / 02期
关键词
K3; surfaces; Ordinary reduction; l-adic representations; Newton polygons; FINITE-FIELDS; ABELIAN-VARIETIES; GALOIS REPRESENTATION; TATE-CONJECTURE; FROBENIUS; HEIGHT;
D O I
10.2478/s11533-009-0013-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 23 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]  
[Anonymous], 1981, I HAUTES ETUDES SCI
[3]  
ARTIN M, 1977, ANN SCI ECOLE NORM S, V10, P87
[4]  
Bogomolov F.A., 1980, C. R. Acad. Sci. Paris Sr. A-B, V290, pA701
[5]   POINTS OF FINITE-ORDER ON AN ABELIAN VARIETY [J].
BOGOMOLOV, FA .
MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 17 (01) :55-72
[6]  
DELIGNE P, 1972, INVENT MATH, V15, P206
[7]  
DELIGNE P, 1981, ALGEBRAIC SURFACES O, V868, P58
[8]  
Joshi K, 2003, INT MATH RES NOTICES, V2003, P109
[9]  
Katz N M., 1970, Publications Mathematiques de l'Institut des Hautes Etudes Scientifiques, V39, P175, DOI 10.1007/BF02684688
[10]   CONSEQUENCES OF RIEMANN HYPOTHESIS FOR VARIETIES OVER FINITE-FIELDS [J].
KATZ, NM ;
MESSING, W .
INVENTIONES MATHEMATICAE, 1974, 23 (01) :73-77