An automated cloud detection method for daily NOAA-14 AVHRR data for Texas, USA

被引:61
|
作者
Chen, PY [1 ]
Srinivasan, R
Fedosejevs, G
Narasimhan, B
机构
[1] Texas A&M Univ, Dept Forest Sci, Spatial Sci Lab, College Stn, TX 77843 USA
[2] Canada Ctr Remote Sensing, Ottawa, ON K1A 0Y7, Canada
[3] Texas A&M Univ, Dept Agr Engn, College Stn, TX 77843 USA
关键词
D O I
10.1080/01431160110075631
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A variety of cloud types appears in each Advanced Very High Resolution Radiometer (AVHRR) image. Clouds may contaminate solar reflectance data to be used for vegetation studies. This may jeopardize the accuracy of any quantitative results from data analysis. Published cloud detection algorithms for AVHRR data to date have mainly used data over Europe received from the National Oceanic and Atmospheric Administration ( NOAA)-12 or earlier satellites. This study examined the previously published cloud detection methods with the intent to develop an automated cloud detection algorithm for NOAA-14 AVHRR data for Texas. Through testing a whole year of AVHRR scenes, the Texas automated cloud detection algorithm was capable of correctly identifying most of the cloud-contaminated pixels except for cloud shadow pixels. The overall accuracy reached 89%. The developed algorithm includes three major steps, top-of-the-atmosphere reflectance of channel 1, temperature difference of channels 3 and 4, and a combination of ratio of channel 2 to channel 1 and temperature in channel 4.
引用
收藏
页码:2939 / 2950
页数:12
相关论文
共 50 条
  • [1] Anomalies in channel 4 of the NOAA-14 AVHRR
    Arbelo, M.
    Podesta, G.
    Hernandez-Leal, P. A.
    REVISTA DE TELEDETECCION, 2005, (24): : 85 - 88
  • [2] Evaluating different NDVI composite techniques using NOAA-14 AVHRR data
    Chen, PY
    Srinivasan, R
    Fedosejevs, G
    Kiniry, JR
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (17) : 3403 - 3412
  • [3] Emissivity and temperature estimation from MSG SEVIRI data;: Method validation with simulated and NOAA-14 AVHRR data
    Dash, P
    Göttsche, FM
    Olesen, FS
    CALIBRATION, CHARACTERIZATION OF SATELLITE SENSORS, PHYSICAL PARAMETERS DERIVED FROM SATELLITE DATA, 2003, 32 (11): : 2241 - 2246
  • [4] Sea temperature and cloudiness obtained with NOAA-14 AVHRR imagery
    Piazza, E
    OCEANS'98 - CONFERENCE PROCEEDINGS, VOLS 1-3, 1998, : 1709 - 1713
  • [5] An automated cloud detection method for daily NOAA 16 advanced very high resolution radiometer data over Texas and Mexico
    Chen, PY
    Srinivasan, R
    Fedosejevs, G
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D23)
  • [6] Cloud and ice detection using NOAA/AVHRR data
    Muramoto, K
    Saito, H
    Matsuura, K
    Yamanouchi, T
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 73 - 75
  • [7] Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa
    Pinheiro, A. C. T.
    Mahoney, R.
    Privette, J. L.
    Tucker, C. J.
    REMOTE SENSING OF ENVIRONMENT, 2006, 103 (02) : 153 - 164
  • [8] Updated calibration coefficients for NOAA-14 AVHRR Channels 1 and 2
    Tahnk, WR
    Coakley, JA
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (15) : 3053 - 3057
  • [9] The method of early drought detection with AVHRR/NOAA data
    Spivak, L
    Terehov, A
    Muratova, N
    Arkhipkin, O
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 281 - 283
  • [10] Application of nonlinear multi-channel algorithms for estimating sea surface temperature with NOAA-14 AVHRR data
    Li Xiao-feng
    Chinese Journal of Oceanology and Limnology, 2000, 18 (3): : 199 - 207