Existence results of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay

被引:25
作者
Xie, Shengli [1 ]
机构
[1] Anhui Univ Architecture, Sch Math & Phys, Hefei 230601, Anhui, Peoples R China
关键词
impulsive fractional integro-differential evolution equations; mild solutions; fixed point; Kuratowski measure of noncompactness; Banach spaces;
D O I
10.2478/s13540-014-0219-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence and uniqueness of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay in Banach spaces. We generalize the existence theorem for integer order differential equations to the fractional order case. The results obtained here improve and generalize many known results.
引用
收藏
页码:1158 / 1174
页数:17
相关论文
共 24 条
[1]   SEMILINEAR FRACTIONAL ORDER INTEGRO-DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN BANACH SPACES [J].
Aissani, Khalida ;
Benchohra, Mouffak .
ARCHIVUM MATHEMATICUM, 2013, 49 (02) :105-117
[2]  
Balachandran K, 2010, ELECTRON J QUAL THEO, P1
[3]   Existence of the Mild Solutions for Impulsive Fractional Equations with Infinite Delay [J].
Dabas, Jaydev ;
Chauhan, Archana ;
Kumar, Mukesh .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 2011
[4]   Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay [J].
Dabas, Jaydev ;
Chauhan, Archana .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (3-4) :754-763
[5]   On the concept and existence of solution for impulsive fractional differential equations [J].
Feckan, Michal ;
Zhou, Yong ;
Wang, JinRong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) :3050-3060
[6]   Impulsive fractional functional differential equations [J].
Guo, Tian Liang ;
Jiang, Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3414-3424
[7]  
HAASE M, 2006, OPER THEOR, V169, pR11, DOI 10.1007/3-7643-7698-8_2
[8]  
Hale J.K., 1978, Funkcial. Ekvac., V21, P11
[10]   Existence results for a damped second order abstract functional differential equation with impulses [J].
Hernandez, Eduardo ;
Balachandran, K. ;
Annapoorani, N. .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (11-12) :1583-1594