Ordered arrays of magnetic nanowires investigated by polarized small-angle neutron scattering

被引:24
作者
Maurer, Thomas [1 ]
Gautrot, Sebastien [2 ]
Ott, Frederic [2 ]
Chaboussant, Gregory [2 ]
Zighem, Fatih [3 ,4 ]
Cagnon, Laurent [5 ,6 ]
Fruchart, Olivier [5 ,6 ]
机构
[1] Univ Technol Troyes, ICD CNRS UMR STMR 6279, Lab Nanotechnol & Instrumentat Opt, F-10004 Troyes, France
[2] CNRS, CEA UMR12, Lab Leon Brillouin, Gif Sur Yvette, France
[3] CNRS, Inst Galilee, LSPM, F-93430 Villetaneuse, France
[4] Univ Paris 13, F-93430 Villetaneuse, France
[5] CNRS, Inst Neel, F-38042 Grenoble 9, France
[6] Univ Grenoble 1, F-38042 Grenoble 9, France
关键词
CLASSICAL STATISTICAL MECHANICS; FIELD OPTICAL MICROSCOPY; NICKEL NANOWIRES; ANODIC ALUMINA; ELECTRODEPOSITED COPT; COBALT NANORODS; MEMBRANES; SANS; NANOMATERIALS; RESOLUTION;
D O I
10.1103/PhysRevB.89.184423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polarized small-angle neutron scattering (PSANS) experimental results obtained on arrays of ferromagnetic Co nanowires (phi approximate to 13 nm) embedded in self-organized alumina (Al2O3) porous matrices are reported. The triangular array of aligned nanowires is investigated as a function of the external magnetic field with a view to determine experimentally the real space magnetization (M) over right arrow((r) over right arrow) distribution inside the material during the magnetic hysteresis cycle. The observation of field-dependentSANSintensities allows us to characterize the influence of magnetostatic fields. The PSANS experimental data are compared to magnetostatic simulations. These results evidence that PSANS is a technique able to address real-space magnetization distributions in nanostructured magnetic systems. We show that beyond structural information (shape of the objects, two-dimensional organization) already accessible with nonpolarized SANS, using polarized neutrons as the incident beam provides information on the magnetic form factor and stray fields mu H-0(d) distribution in between nanowires.
引用
收藏
页数:9
相关论文
共 56 条
[1]  
[Anonymous], 1982, SMALL ANGLE XRAY SCA
[2]   STRUCTURE AND RESISTIVITY OF LIQUID METALS [J].
ASHCROFT, NW ;
LEKNER, J .
PHYSICAL REVIEW, 1966, 145 (01) :83-&
[3]   High temperature structural and magnetic properties of cobalt nanorods [J].
Atmane, Kahina Ait ;
Zighem, Fatih ;
Soumare, Yaghoub ;
Ibrahim, Mona ;
Boubekri, Rym ;
Maurer, Thomas ;
Margueritat, Jeremie ;
Piquemal, Jean-Yves ;
Ott, Frederic ;
Chaboussant, Gregory ;
Schoenstein, Frederic ;
Jouini, Noureddine ;
Viau, Guillaume .
JOURNAL OF SOLID STATE CHEMISTRY, 2013, 197 :297-303
[4]   Reversal modes in arrays of interacting magnetic Ni nanowires: Monte Carlo simulations and scaling technique [J].
Bahiana, M. ;
Amaral, F. S. ;
Allende, S. ;
Altbir, D. .
PHYSICAL REVIEW B, 2006, 74 (17)
[5]   Photoelectron microscopy [J].
Bauer, E .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (49) :11391-11404
[6]   Apertureless scanning near field optical microscope with sub-10 nm resolution [J].
Bek, A ;
Vogelgesang, R ;
Kern, K .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (04)
[7]   Spin-polarized scanning tunnelling microscopy [J].
Bode, M .
REPORTS ON PROGRESS IN PHYSICS, 2003, 66 (04) :523-582
[8]   Electrodeposited CoPt and FePt alloys nanowires [J].
Cagnon, L. ;
Dahmane, Y. ;
Voiron, J. ;
Pairis, S. ;
Bacia, M. ;
Ortega, L. ;
Benbrahim, N. ;
Kadri, A. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :2428-2430
[9]   Magnetostatic interactions in dense nanowire arrays [J].
Clime, L ;
Clureanu, P ;
Yelon, A .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 297 (01) :60-70
[10]   Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition [J].
Da Col, S. ;
Darques, M. ;
Fruchart, O. ;
Cagnon, L. .
APPLIED PHYSICS LETTERS, 2011, 98 (11)