A novel L1/2 regularization shooting method for Cox's proportional hazards model

被引:2
作者
Luan, Xin-Ze [1 ]
Liang, Yong [1 ]
Liu, Cheng [1 ]
Leung, Kwong-Sak [2 ]
Chan, Tak-Ming [2 ]
Xu, Zong-Ben [3 ]
Zhang, Hai [3 ]
机构
[1] Macau Univ Sci & Technol, Macau, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[3] Xi An Jiao Tong Univ, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable selection; Cox model; Lasso; L-1/2 regularization shooting algorithm; NONCONCAVE PENALIZED LIKELIHOOD; BAYESIAN VARIABLE SELECTION; ADAPTIVE LASSO; SURVIVAL; REGRESSION;
D O I
10.1007/s00500-013-1042-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, a series of methods are based on a L (1) penalty to solve the variable selection problem for a Cox's proportional hazards model. In 2010, Xu et al. have proposed a L (1/2) regularization and proved that the L (1/2) penalty is sparser than the L (1) penalty in linear regression models. In this paper, we propose a novel shooting method for the L (1/2) regularization and apply it on the Cox model for variable selection. The experimental results based on comprehensive simulation studies, real Primary Biliary Cirrhosis and diffuse large B cell lymphoma datasets show that the L (1/2) regularization shooting method performs competitively.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 39 条
[1]  
Akaike H., 1973, 2 INTERNAT SYMPOS IN, P267, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0, 10.1007/978-1-4612-0919-5_38]
[2]  
[Anonymous], P 2010 INT C POW SYS
[3]  
Brier G. W., 1950, Monthly weather review, V78, P1, DOI [DOI 10.1175/1520-0493(1950)078, DOI 10.1175/1520-0493(1950)078ANDLT
[4]  
0001:VOFEITANDGT
[5]  
2.0.CO
[6]  
2, 10.1175/1520-0493(1950)078()0001:VOFEIT()2.0.CO
[7]  
2, DOI 10.1175/1520-0493(1950)0782.0.CO
[8]  
2]
[9]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[10]  
Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]