Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI

被引:50
作者
Li, Xiaoxiao [1 ]
Dvornek, Nicha C. [4 ]
Zhuang, Juntang [1 ]
Ventola, Pamela [5 ]
Duncan, James S. [1 ,2 ,3 ,4 ]
机构
[1] Yale Univ, Biomed Engn, New Haven, CT 06520 USA
[2] Yale Univ, Elect Engn, New Haven, CT USA
[3] Yale Univ, Dept Stat & Data Sci, New Haven, CT USA
[4] Yale Sch Med, Radiol & Biomed Imaging, New Haven, CT USA
[5] Yale Sch Med, Ctr Child Study, New Haven, CT USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III | 2018年 / 11072卷
关键词
AUTISM;
D O I
10.1007/978-3-030-00931-1_24
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Finding the biomarkers associated with ASD is extremely helpful to understand the underlying roots of the disorder and can lead to earlier diagnosis and more targeted treatment. Although Deep Neural Networks (DNNs) have been applied in functional magnetic resonance imaging (fMRI) to identify ASD, understanding the data driven computational decision making procedure has not been previously explored. Therefore, in this work, we address the problem of interpreting reliable biomarkers associated with identifying ASD; specifically, we propose a 2-stage method that classifies ASD and control subjects using fMRI images and interprets the saliency features activated by the classifier. First, we trained an accurate DNN classifier. Then, for detecting the biomarkers, different from the DNN visualization works in computer vision, we take advantage of the anatomical structure of brain fMRI and develop a frequency-normalized sampling method to corrupt images. Furthermore, in the ASD vs. control subjects classification scenario, we provide a new approach to detect and characterize important brain features into three categories. The biomarkers we found by the proposed method are robust and consistent with previous findings in the literature. We also validate the detected biomarkers by neurological function decoding and comparing with the DNN activation maps.
引用
收藏
页码:206 / 214
页数:9
相关论文
共 13 条
[1]  
[Anonymous], Understanding neural networks through deep visualization
[2]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[3]   Biomarkers in autism [J].
Goldani, Andre A. S. ;
Downs, Susan R. ;
Widjaja, Felicia ;
Lawton, Brittany ;
Hendren, Robert L. .
FRONTIERS IN PSYCHIATRY, 2014, 5
[4]   Resting state functional magnetic resonance imaging and neural network classified autism and control [J].
Iidaka, Tetsuya .
CORTEX, 2015, 63 :55-67
[5]  
Kaiser MarthaD., 2010, PNAS
[6]  
Li X., 2018, ISBI
[7]   Advances in functional and structural MR image analysis and implementation as FSL [J].
Smith, SM ;
Jenkinson, M ;
Woolrich, MW ;
Beckmann, CF ;
Behrens, TEJ ;
Johansen-Berg, H ;
Bannister, PR ;
De Luca, M ;
Drobnjak, I ;
Flitney, DE ;
Niazy, RK ;
Saunders, J ;
Vickers, J ;
Zhang, YY ;
De Stefano, N ;
Brady, JM ;
Matthews, PM .
NEUROIMAGE, 2004, 23 :S208-S219
[8]   Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain [J].
Tzourio-Mazoyer, N ;
Landeau, B ;
Papathanassiou, D ;
Crivello, F ;
Etard, O ;
Delcroix, N ;
Mazoyer, B ;
Joliot, M .
NEUROIMAGE, 2002, 15 (01) :273-289
[9]   Differentiating between autism spectrum disorders and other developmental disabilities in children who failed a screening instrument for ASD [J].
Ventola, Pamela ;
Kleinman, Jamie ;
Pandey, Juhi ;
Wilson, Leandra ;
Esser, Emma ;
Boorstein, Hilary ;
Dumont-Mathieu, Thyde ;
Marshia, Gail ;
Barton, Marianne ;
Hodgson, Sarah ;
Green, James ;
Volkmar, Fred ;
Chawarska, Katarzyna ;
Babitz, Tammy ;
Robins, Diana ;
Fein, Deborah .
JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS, 2007, 37 (03) :425-436
[10]   Statistics review 6: Nonparametric methods [J].
Whitley, E ;
Bai, J .
CRITICAL CARE, 2002, 6 (06) :509-513