Anti-isomorphisms and involutions on the idealization of the incidence space over the finitary incidence algebra

被引:4
作者
Fornaroli, Erica Z. [1 ]
Pezzott, Roger E. M. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, Ave Colombo 5790, BR-87020900 Maringa, Parana, Brazil
关键词
Anti-automorphism; Involution; Finitary incidence algebras; Idealization; AUTOMORPHISMS; CLASSIFICATION; DERIVATIONS;
D O I
10.1016/j.laa.2021.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field and P a partially ordered set (poset). Let F I(P, K) and I(P, K) be the finitary incidence algebra and the incidence space of P over K, respectively, and let D(P, K) = F I(P, K)circle plus I(P, K) be the idealization of the F I(P, K)-bimodule I(P, K). In the first part of this paper, we show that D(P, K) has an anti-automorphism (involution) if and only if P has an anti-automorphism (involution). We also present a characterization of the anti-automorphisms and involutions on D(P, K). In the second part, we obtain the classification of involutions on D(P, K) to the case when char K (sic) 2 and P is a connected poset such that every multiplicative automorphism of F I(P, K) is inner and every derivation from F I(P, K) to I(P, K) is inner (in particular, when P has an element that is comparable with all its elements). (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 109
页数:28
相关论文
共 24 条
  • [1] MULTIPLICATIVE AUTOMORPHISMS OF INCIDENCE ALGEBRAS
    Brusamarello, Rosali
    Fornaroli, Erica Z.
    Santulo, Ednei A., Jr.
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 726 - 736
  • [2] Classification of involutions on finitary incidence algebras
    Brusamarello, Rosali
    Fornaroli, Erica Zancanella
    Santulo Junior, Ednei Aparecido
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (08) : 1085 - 1098
  • [3] Anti-automorphisms and involutions on (finitary) incidence algebras
    Brusamarello, Rosali
    Fornaroli, Erica Z.
    Santulo, Ednei A., Jr.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (02) : 181 - 188
  • [4] Automorphisms and involutions on incidence algebras
    Brusamarello, Rosali
    Lewis, David W.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (11) : 1247 - 1267
  • [5] CLASSIFICATION OF INVOLUTIONS ON INCIDENCE ALGEBRAS
    Brusamarello, Rosali
    Fornaroli, Erica Z.
    Santulo, Ednei A., Jr.
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 1941 - 1955
  • [6] Local automorphisms of finitary incidence algebras
    Courtemanche, Jordan
    Dugas, Manfred
    Herden, Daniel
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 : 221 - 257
  • [7] Involutions for upper triangular matrix algebras
    Di Vincenzo, Onofrio Mario
    Koshlukov, Plamen
    La Scala, Roberto
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2006, 37 (04) : 541 - 568
  • [8] Finitary incidence algebras and idealizations
    Dugas, Manfred
    Wagner, Bradley
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (10) : 1936 - 1951
  • [9] HOMOMORPHISMS OF FINITARY INCIDENCE ALGEBRAS
    Dugas, Manfred
    [J]. COMMUNICATIONS IN ALGEBRA, 2012, 40 (07) : 2373 - 2384
  • [10] Additive derivations of incidence algebras
    Fornaroli, Erica Z.
    Pezzott, Roger E. M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) : 1816 - 1828