Anti-isomorphisms and involutions on the idealization of the incidence space over the finitary incidence algebra

被引:4
作者
Fornaroli, Erica Z. [1 ]
Pezzott, Roger E. M. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, Ave Colombo 5790, BR-87020900 Maringa, Parana, Brazil
关键词
Anti-automorphism; Involution; Finitary incidence algebras; Idealization; AUTOMORPHISMS; CLASSIFICATION; DERIVATIONS;
D O I
10.1016/j.laa.2021.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field and P a partially ordered set (poset). Let F I(P, K) and I(P, K) be the finitary incidence algebra and the incidence space of P over K, respectively, and let D(P, K) = F I(P, K)circle plus I(P, K) be the idealization of the F I(P, K)-bimodule I(P, K). In the first part of this paper, we show that D(P, K) has an anti-automorphism (involution) if and only if P has an anti-automorphism (involution). We also present a characterization of the anti-automorphisms and involutions on D(P, K). In the second part, we obtain the classification of involutions on D(P, K) to the case when char K (sic) 2 and P is a connected poset such that every multiplicative automorphism of F I(P, K) is inner and every derivation from F I(P, K) to I(P, K) is inner (in particular, when P has an element that is comparable with all its elements). (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 109
页数:28
相关论文
共 24 条
[1]   MULTIPLICATIVE AUTOMORPHISMS OF INCIDENCE ALGEBRAS [J].
Brusamarello, Rosali ;
Fornaroli, Erica Z. ;
Santulo, Ednei A., Jr. .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) :726-736
[2]   Classification of involutions on finitary incidence algebras [J].
Brusamarello, Rosali ;
Fornaroli, Erica Zancanella ;
Santulo Junior, Ednei Aparecido .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (08) :1085-1098
[3]   Anti-automorphisms and involutions on (finitary) incidence algebras [J].
Brusamarello, Rosali ;
Fornaroli, Erica Z. ;
Santulo, Ednei A., Jr. .
LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (02) :181-188
[4]   Automorphisms and involutions on incidence algebras [J].
Brusamarello, Rosali ;
Lewis, David W. .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (11) :1247-1267
[5]   CLASSIFICATION OF INVOLUTIONS ON INCIDENCE ALGEBRAS [J].
Brusamarello, Rosali ;
Fornaroli, Erica Z. ;
Santulo, Ednei A., Jr. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) :1941-1955
[6]   Local automorphisms of finitary incidence algebras [J].
Courtemanche, Jordan ;
Dugas, Manfred ;
Herden, Daniel .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 :221-257
[7]   Involutions for upper triangular matrix algebras [J].
Di Vincenzo, Onofrio Mario ;
Koshlukov, Plamen ;
La Scala, Roberto .
ADVANCES IN APPLIED MATHEMATICS, 2006, 37 (04) :541-568
[8]   Finitary incidence algebras and idealizations [J].
Dugas, Manfred ;
Wagner, Bradley .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (10) :1936-1951
[9]   HOMOMORPHISMS OF FINITARY INCIDENCE ALGEBRAS [J].
Dugas, Manfred .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (07) :2373-2384
[10]   Additive derivations of incidence algebras [J].
Fornaroli, Erica Z. ;
Pezzott, Roger E. M. .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) :1816-1828